Science, asked by prempalmall, 1 year ago

A ray of light travelling in air falls on the surface of a glass slab at an angle of incidence 45°. Find the angle made by the refracted ray with the normal within the slab where refractive index for glass is 3/2.​

Answers

Answered by ItSdHrUvSiNgH
20

by \: using \: snells \: law =  >  \\  \\ mew1 \:  \times sin \: i = mew2 \times sin \: r \\  \\ 1 \times  \frac{1}{ \sqrt{2} }  =  \frac{3}{2}  \times sin \: r \\ sin \: r =  \frac{ \sqrt{2} }{3}  \\ r =  {sin}^{ - 1} ( \frac{ \sqrt{2} }{3} ) \\   \\  \\ \\ hope \: it \: helps \: uh....

Answered by Anonymous
14

\huge\underline\blue{\sf Answer:}

\large\red{\boxed{\sf \theta_2=sin^{-1}\frac{2\sqrt{2}}{3} }}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

  • Angle of incidence (\sf{\theta_1})=45°

  • Refractive index of air (\sf{\mu_1)=1}

  • Refractive index of glass (\sf{\mu_{2})=\frac{3}{2}}

\large\underline\pink{\sf To\:Find: }

  • Angle made by refracted ray (\sf{\theta_2})=?

━━━━━━━━━━━━━━━━━━━━━━━━

According to Snell's Law

\LARGE{♡}\Large{\boxed{\sf \mu_1sin\theta_1=\mu_2sin\theta_2}}

On Putting value

\large\implies{\sf 1×sin45°=\frac{3}{2}×sin\theta_2 }

Here ,

\sf{\theta_1=angle\:of\: incidence\:ray}

\sf{\theta_2=angle\:of \: refracted\:ray}

\large\implies{\sf 1×\frac{1}{\sqrt{2}}=\frac{3}{2}×sin\theta_2 }

\large\implies{\sf sin\theta_2=\frac{2\sqrt{2}}{3} }

\large\implies{\sf \theta_2=sin^{-1}\frac{2\sqrt{2}}{3} }

\Huge\red{♡}\large\red{\boxed{\sf \theta_2=sin^{-1}\frac{2\sqrt{2}}{3} }}

Hence ,

Angle of Refracted ray is \underline{\sf \theta_2=\frac{2\sqrt{2}}{3}}

Similar questions