A real valued function f(x) satisfies the functional equation f(x-y)=f(x)f(y)-f(a-x)f(a+y) where a is the constant function f(0)=1,f(2a-x) is
Answers
Answered by
28
hope the answer helps
Attachments:
Answered by
10
The value of f(2a-x) is -f(x)
Therefore f(2a-x)=-f(x)
Step-by-step explanation:
- Given that a real valued function f(x) satisfies the functional equation
f(x-y)=f(x)f(y)-f(a-x)f(a+y) where a is the constant function and f(0)=1
- To find the value of f(2a-x) :
- f(x-y)=f(x)f(y)-f(a-x)f(a+y)
- put y=0 in above function we get
- f(x-0)=f(x)f(0)-f(a-x)f(a+0)
- f(x)=f(x)(1)-f(a-x)f(a) ( since f(0)=1 )
- Subtract f(x) on both sides we get
- f(x)-f(x)=f(x)-f(a-x)f(a)-f(x)
- 0=-f(a-x)f(a)+0
- f(a)f(a-x)=0
- Therefore f(a)=0
- Now we can write f(2a-x)=f(a-(x-a))
- =f(a)f(x-a)-f(a-a)f(a+(x-a)) ( by given f(x-y)=f(x)f(y)-f(a-x)f(a+y) )
- =f(a)f(x-a)-f(0)f(x)
- =(0)f(x-a)-(1)f(x) ( by f(a)=0 and f(0)=1 )
- =0-f(x)
- =-f(x)
- Therefore f(2a-x)=-f(x)
- The value of f(2a-x) is -f(x)
Similar questions