Math, asked by sweetychd8245, 1 year ago

A real valued function f(x) satisfies the functional equation f(x-y)=f(x)f(y)-f(a-x)f(a+y) where a is the constant function f(0)=1,f(2a-x) is

Answers

Answered by jay61
28
hope the answer helps
Attachments:
Answered by ashishks1912
10

The value of f(2a-x) is -f(x)

Therefore f(2a-x)=-f(x)

Step-by-step explanation:

  • Given that a real valued function f(x) satisfies the functional equation

f(x-y)=f(x)f(y)-f(a-x)f(a+y) where a is the constant function and f(0)=1

  • To find the value of f(2a-x) :
  • f(x-y)=f(x)f(y)-f(a-x)f(a+y)
  • put y=0 in above function we get
  • f(x-0)=f(x)f(0)-f(a-x)f(a+0)
  • f(x)=f(x)(1)-f(a-x)f(a) ( since f(0)=1 )
  • Subtract f(x) on both sides we get
  • f(x)-f(x)=f(x)-f(a-x)f(a)-f(x)
  • 0=-f(a-x)f(a)+0
  • f(a)f(a-x)=0
  • f(a)=\frac{0}{f(a-x)}
  • Therefore f(a)=0
  • Now we can write f(2a-x)=f(a-(x-a))
  • =f(a)f(x-a)-f(a-a)f(a+(x-a)) ( by given f(x-y)=f(x)f(y)-f(a-x)f(a+y) )
  • =f(a)f(x-a)-f(0)f(x)
  • =(0)f(x-a)-(1)f(x) ( by f(a)=0 and f(0)=1 )
  • =0-f(x)
  • =-f(x)
  • Therefore f(2a-x)=-f(x)
  • The value of f(2a-x) is -f(x)

Similar questions