World Languages, asked by shiwa62, 4 months ago

. A rectangular cardboard sheet has length 32 cm and breadth 26 cm. The four squares each of side
3 cm are cut from the corners of the sheet and the sides are folded to make a rectangular container
Find the capacity of the container.​

Answers

Answered by Anonymous
9

Answer:

Given :

Length = 32 cm

Breadth = 26 cm

Four squares of each side = 3 cm

To Find :

Capacity of the container (Volume).

Calculation :

Firstly, we'll be calculating the inner length & breadth of the container.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 { \dag  \: \: { \underline \frak{Calculating \:  for \:  length :}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 :  \bf \Longrightarrow \bf (32 - 3 - 3) \: cm \\  \\  \\  :  \bf \Longrightarrow \bf \: 29 - 3 \: cm \\  \\  \\ :  \bf \Longrightarrow { \boxed{\bf{26 \: cm}}} \:  \bigstar

Therefore, the inner length of the container is 26 cm.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 { \dag  \: \: { \underline \frak{Calculating \:  for \:  breadth :}}}

 :  \bf \Longrightarrow \bf (26 - 3 - 3) \: cm \\  \\  \\  :  \bf \Longrightarrow \bf \: 23 - 3 \: cm \\  \\  \\ :  \bf \Longrightarrow { \boxed{\bf{20 \: cm}}} \:  \bigstar

Therefore, the inner breadth of the container is 20 cm.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Also, height of the container is 3 cm.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \dag  \: { \underline { \bf{According \:  to \:  the \:  Question, }}} ⠀⠀⠀⠀⠀⠀⠀

Let's calculate the volume of the container,

Formula to be used :

 \star \boxed{ \sf{ \purple{Volume = length \times breadth \times height }}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Where,

Height ( \pmb{h} ) = 3 cm

Length ( \pmb{l} ) = 26 cm

Length ( \pmb{b} ) = 20 cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \dag Putting the values,

 :  \bf \Longrightarrow \bf \: Volume = l \times \ b \times h \\  \\  \\   :  \bf \Longrightarrow \bf \: Volume \:  =  26 \times 20 \times 3 \: cm \\  \\  \\   :  \bf \Longrightarrow { \boxed{\bf Volume \:  =  \: 1560 \: cm^3}}  \: { \pink{ \bigstar}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \therefore Hence, the volume of the container is 1560 cm³.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 { \green{ \bigstar}} \:  \: { \underline{ \bf{Diagram :}}}

\setlength{\unitlength}{0.9cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 32 cm}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 26 cm}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

Answered by REP0RTER
0

Explanation:

\setlength{\unitlength}{0.9cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 32 cm}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 26 cm}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

Similar questions