Math, asked by ar2596267, 6 months ago

a rectangular garden has an area of 300 square metres and perimeter of 80 metres.
What
are the length and breadth of the garden
(a) 30 m, 10 m
(b) 25 m, 15 m
(c) 35 m, 5 m
(d) 40 m, 10 m​

Answers

Answered by Anonymous
9

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Area of rectangular garden = 300 sq. m

  • Perimeter of rectangular garden = 80 m

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • The length and breadth of garden

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let the length be "l"

  • Let the breadth be "b"

 \:\:

 \underline{\bold{\texttt{Area of rectangle :}}}

 \:\:

\purple\longrightarrow  \bf l \times b

 \:\:

 \sf \longmapsto l \times b = 300 --------(1)

 \:\:

 \underline{\bold{\texttt{Perimeter of rectangle :}}}

 \:\:

\purple\longrightarrow  \bf 2(l + b)

 \:\:

 \sf \longmapsto 80 = 2(l + b)

 \:\:

 \sf \longmapsto 40 = l + b

 \:\:

 \sf \longmapsto l = 40 - b ---------(2)

 \:\:

 \underline{\bold{\texttt{Putting the value of l from (2) to (1) }}}

 \:\:

 \sf \longmapsto (40 - b)\times b = 300

 \:\:

 \sf \longmapsto 40b - b ^2 = 300

 \:\:

 \sf \longmapsto b ^2 - 40b + 300 = 0

 \:\:

 \sf \longmapsto b ^2 - 10b - 30b + 300 = 0

 \:\:

 \sf \longmapsto b(b - 10) -30(b - 10) = 0

 \:\:

 \sf \longmapsto (b - 10)(b - 30) = 0

 \:\:

 \sf \longmapsto b = 10 \ or \ b = 30

 \:\:

If b = 10m

 \:\:

 \sf \longmapsto l \times 10 = 300

 \:\:

 \bf \longmapsto l = 30m

 \:\:

If b = 30m

 \:\:

 \sf \longmapsto l \times 30 = 300

 \:\:

 \bf \longmapsto l = 10m

 \:\:

  • So , Length and breadth will be 30m and 10m respectively or 10m and 30m respectively.

 \:\:

So option (i) is correct

Answered by Rubellite
134

\huge{\underbrace{\sf{\red{^{♡}Answer:}}}}

\large{\boxed{\sf{\orange{Option\:(a)\:30m,10m}}}}

\huge{\underbrace{\sf{\purple{^{♡}Explanation:}}}}

Given :

  • Area of rectangular garden = 300m²
  • Perimeter of the rectangular garden = 80m

To Find:

  • Length and breadth.

Solution :

Perimeter of rectangle: \large{\boxed{\sf{\pink{2(length+breadth)}}}}

:\implies{\sf{2(l+b)=80m}}

:\implies{\sf{(l+b)= \dfrac{80m}{2}}}

:\implies{\sf{(l+b)= 40m}}

:\implies{\sf{l= 40m - b}}

Area of rectangle: \large{\boxed{\sf{\pink{length \times breadth}}}}

:\implies{\sf{l \times b=300m}}

Putting the value l = 40m - b, we get

:\implies{\sf{40-b\times b=300m}}

:\implies{\sf{40b-b^{2}=300m}}

:\implies{\sf{40b-b^{2}+300=0}}

:\implies{\sf{b^{2}-40b+300=0}}

:\implies{\sf{b^{2}-10b-30b+300=0}}

:\implies{\sf{b(-b-10)-30(b-10)=0}}

:\implies{\sf{(b-30)(b-10)=0}}

Hence, b can 30 and 10.

If b = 30

:\implies{\sf{l \times b=300m}}

:\implies{\sf{l \times 30=300m}}

:\implies{\sf{l =10m}}

If b = 10

:\implies{\sf{l \times b=300m}}

:\implies{\sf{l \times 10=300m}}

:\implies{\sf{l =30m}}

Hence, If b = 30 then l = 10 and if b= 10 and l=30.

Therefore the answer is (a) 10,30.

\rule{400}4

Similar questions