Math, asked by abhijitkardile2004, 1 year ago

A regular polygon of side 15 cm is inscribed in a circle of radius 4 cm. Find the area of
the polygon. (sin 24° = 0.407)​

Answers

Answered by Anonymous
9

\Large\underline{\underline{\mathfrak \red{Solution:}}}

\large\underline{\underline{\sf Given:}}

  • Regular polygon side = 15cm
  • Radius of circle = 4cm

\large\underline{\underline{\sf To\:Find:}}

  • Area of Polygon (A).

The central angle made by the side of a regular polygon of 15 sides inscribed in a circle = (360° ÷ 15) = 240°

∆ OAB is one of the 15 congruent triangles made by the regular polygon.

\implies{\sf Radius\:of \:the \:circle \:(r) = OA = 4 cm}

\implies{\sf \triangle A(OAB)=\dfrac{1}{2}×r^2sin\theta }

\implies{\sf \dfrac{1}{2}×4^2×0.407}

\implies{\sf \dfrac{1}{2}×16×0.407 }

\implies{\sf 8×0.407}

\implies{\sf 3.256\:cm^2}

\implies{\sf A=regular\:polygon\:of\:15\:sides }

\implies{\sf A(OAB)×15 }

\implies{\sf 3.256×15 }

\implies{\sf 48.84\:cm^2}

\Large\underline{\underline{\mathfrak \red{Answer:}}}

{\sf \therefore \:area\:of\:polygon\:is\:48.84\:cm^2}

Similar questions