A resistor of 200 ohm and a capacitor of 15micro farad are connected in series to a 220v ,50hz ac source.Calculate the current in the circuit and the rms voltage across the resistor and the capacitor.Is the algebraic sum of these voltages more than the source voltage
Answers
Answered by
11
Given that
R = 200Ω
C = 15 μF = 15 × 10–6 F
ξ = ξ sinωt
ξ = 220 V
f = 50 Hz
W = 2πf = (100π) rad/s
ξ = 220 sin (100π)
Reactance of capacitor
Xc = 1/ We
= 1 / 100 * pi * 15 * 10^-6
= 10^6 / 314 * 15
= 212.31 ohm
So, impedance
Z = sqrt (R^2 + X^2)
Z = sqrt (200^2 + 212.31^2)
= 291.67 ohm
I = E / Z = 220 sin (100* pi * t) / 291.67
= 0.75 sin (100 * pi *t)
Irms = 0.75A
Voltage across capacitor VR = Irms × XC
= 0.75 × 200
= 150 volt
Voltage across capacitor VC = Irms × XC
= 0.75 × 212.31
= 159.23 volt
R = 200Ω
C = 15 μF = 15 × 10–6 F
ξ = ξ sinωt
ξ = 220 V
f = 50 Hz
W = 2πf = (100π) rad/s
ξ = 220 sin (100π)
Reactance of capacitor
Xc = 1/ We
= 1 / 100 * pi * 15 * 10^-6
= 10^6 / 314 * 15
= 212.31 ohm
So, impedance
Z = sqrt (R^2 + X^2)
Z = sqrt (200^2 + 212.31^2)
= 291.67 ohm
I = E / Z = 220 sin (100* pi * t) / 291.67
= 0.75 sin (100 * pi *t)
Irms = 0.75A
Voltage across capacitor VR = Irms × XC
= 0.75 × 200
= 150 volt
Voltage across capacitor VC = Irms × XC
= 0.75 × 212.31
= 159.23 volt
Answered by
0
Answer:
hope this answer helps you.
Attachments:
Similar questions