A right angled triangle has a hypotenuse of length 13 cm and a perimeter of length 30cm. find the length of the sides forming the right angle.
Answers
Answer:
a=12
b=5
Step-by-step explanation:
Given,
c = 13cm
Perimeter, P = 30cm
We know,
Pythagoras theorem,
a² + b² = c² - - - - (1)
Perimeter of a triangle,
P = a + b + c - - - - (2)
where, a, b and c are the sides of the triangle.
30 = a + b + c
30 = a + b + 13
a + b = 17
Adding 2ab to both sides of the (1), we get
a² + b² + 2ab = c² + 2ab
(a + b)² = 13² + 2ab ( using (a+b)² = a² + 2ab + b²)
17² - 13² = 2ab
ab = (17² - 13²)/2 = 60
We have,
a + b = 17 => b = -a + 17
ab = 60 => a(-a + 17) + 60
-a² + 17a - 60 = 0
-a² + 17a - 60 = 0
a² - 17a + 60 = 0
using quadratic formula,
we have,
a = 5 or a = 12
b = -a + 17
=> b = -5 + 17 = 12
or
=> b = -12 + 17 = 5
Either a=5, b=12 or a=12, a=5
Check:
a² + b² = c²
LHS => 5² + 12² = 169 = 132 => RHS