Math, asked by suhaniwarse72, 10 months ago


a right circular cone
of height 4cm has a CSA 47.1cm² find it's volume
(3.14)​

Answers

Answered by radhika0106
42

Step-by-step explanation:

Given=》

height of the cone h = 4cm

Curved surface area =47.1cm²

To find =》

Volume =?

Solution =》

Let r is the radius and l is the slant height of the circular cone.

Again given curve surface = 47.1

=》πrl= 47.1

3.14 \times r \times  \sqrt{r {}^{2}  + h {}^{2} }   = 47.1 \\  = r \times  \sqrt{r {}^{2} + h {}^{2}  }  =  \frac{47.1}{3.14}  \\  = r {}^{} \times  \sqrt{r {}^{2}  { + h {}^{} }^{2} }  = 15 \\  = r \times  \sqrt{r {}^{2}  +  {4}^{2} }  = 15 \\  = r \times  \sqrt{r {}^{2}  + 16}  = 15 \\  = r { \times}^{} (r {}^{2}  + 16) = 15 {}^{2}  \\  = r {}^{2}  \times (r {}^{2}  + 16) = 225 \\  = r {}^{4}  + 16r {}^{2}  - 225 = 0 \\  = (r {}^{2}  - 9)(r {}^{2}  + 25) = 0 \\  = r {}^{2}  = 9. - 25

Since r2 ≠ -25

so r²=9

r=3

Vol of cone = π r²h/3

 \frac{3.14 \times 3 \times 3 \times 4}{3}  \\  = 3.14 \times 3 \times 4 \\  = 3.14 \times 12 \\  = 37.68cm {}^{3}

So , the volume is 37.68cm³

Similar questions