Math, asked by mkousthubha, 10 months ago

Find the quadratic polynomial in each case, with the given numbers as the sum and
product of its zeroes respectively.
()
-1
(1) 12,
(1) O.




(iv) 1,1
(v)-1/4,1/4
(vi) 4, 1​

Answers

Answered by GaneshRaman
3

Step-by-step explanation:

4. o

4. \\ sum \: of \: zeroes =  \alpha  +  \beta  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 1 + 1 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 2 \\ product \: of \: zeroes \:  =  \alpha  \beta  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 1  \times 1 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 1

Answered by Anonymous
9

\Large{\underline{\underline{\bf{Solution :}}}}

As, we have to find the quadratic polynomial (Q.P)

↪(a)

We know that,

\small{\star{\boxed{\sf{Quadratic \: polynomial = x^2 - (Sum)x + Product}}}}

Putting Values

\begin{lgathered}\sf{\rightarrow Q.P = x^2 -(1)x + 1} \\ \\ \sf{\rightarrow Q.P = x^2 - x + 1} \\ \\ \Large{\implies{\boxed{\boxed{\sf{x^2 - x + 1}}}}}\end{lgathered}

\rule{200}{2}

↪(b)

We know that,

\small{\star{\boxed{\sf{Quadratic \: polynomial = x^2 - (Sum)x + Product}}}}

Putting Values

\begin{lgathered}\sf{\rightarrow Q.P = x^2 - \bigg(\frac{-1}{4}\bigg)x + \frac{1}{4}} \\ \\ \sf{\rightarrow Q.P = x^2 + \frac{1}{4}x + \frac{1}{4}} \\ \\ \Large{\implies{\boxed{\boxed{\sf{x^2 + \frac{1}{4}x + \frac{1}{4}}}}}}\end{lgathered}

\rule{200}{2}

↪(c)

We know that,

</p><p>\small{\star{\boxed{\sf{Quadratic \: polynomial = x^2 - (Sum)x + Product}}}}

Putting Values

\begin{lgathered}\sf{\rightarrow Q.P = x^2 - (4)x + 1} \\ \\ \sf{\rightarrow Q.P = x^2 - 4x + 1} \\ \\ \Large{\implies{\boxed{\boxed{\sf{x^2 - 4x + 1}}}}}\end{lgathered}

Similar questions