Math, asked by dhepmot21, 3 months ago

for maths genius only

solve question no. 17​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

f(x) =  \frac{ {a}^{x} }{ {a}^{x}  +  \sqrt{x} }  \\

f(1 - x) =  \frac{ {a}^{1 - x} }{ {a}^{1 - x}  +  \sqrt{a} }  \\

 =  \frac{ \frac{a}{ {a}^{x} } }{ \frac{a}{ {a}^{x} }  +  \sqrt{a} }  \\

 =  \frac{a}{a +  \sqrt{a} . {a}^{x} }  \\

 =  \frac{ \sqrt{a} }{ \sqrt{a}  +  {a}^{x} }  \\

Now,

f(x) + f(1 - x) =  \frac{ {a}^{x} }{ {a}^{x} +  \sqrt{a}  }  +  \frac{ \sqrt{a} }{ \sqrt{a} +  {a}^{x}  }  \\

 = 1

Answered by anindyaadhikari13
1

Required Answer:-

Given:

 \rm \mapsto f(x) =  \dfrac{ {a}^{x}}{ {a}^{x} +  \sqrt{a}  }

To find:

  • Value of f(x) + f(1 - x)

Solution:

Given that,

 \rm f(x) =  \dfrac{ {a}^{x}}{ {a}^{x} +  \sqrt{a}}

So,

 \rm f(1 - x) =  \dfrac{ {a}^{1 - x}}{ {a}^{1 - x} +  \sqrt{a}}

 \rm   =  \dfrac{a}{ {a}^{x} }  \div  ({a}^{1 - x} +  \sqrt{a})

 \rm   =  \dfrac{a}{ {a}^{x} }  \div   \bigg( \dfrac{a}{ {a}^{x} }  +  \sqrt{a} \bigg)

 \rm   =  \dfrac{a}{ {a}^{x} }  \div   \bigg( \dfrac{a +  {a}^{x} \sqrt{a}  }{ {a}^{x} }  \bigg)

 \rm   =  \dfrac{a}{ {a}^{x} }  \times  \dfrac{ {a}^{x} }{a +  {a}^{x} \sqrt{a}  }

 \rm   = \dfrac{ a}{a +  {a}^{x} \sqrt{a}  }

 \rm   = \dfrac{ \sqrt{a}  \times  \sqrt{a} }{ \sqrt{a} ( \sqrt{a}  +   {a}^{x} )}

 \rm   = \dfrac{\sqrt{a} }{\sqrt{a}  +   {a}^{x}}

So,

 \rm f(x) + f(1 - x)

 \rm =  \dfrac{ {a}^{x} }{ {a}^{x} +  \sqrt{a} }  +  \dfrac{ \sqrt{a} }{ {a}^{x} +  \sqrt{a} }

 \rm =  \dfrac{ {a}^{x} +  \sqrt{a}  }{ {a}^{x} +  \sqrt{a} }

 \rm = 1

Hence,

 \rm \mapsto f(x) + f(1 - x) = 1

Similar questions