Math, asked by giridharbhat332, 11 months ago

A right circular cylinder and a cone have equal bases and equal heights. If their curved
surface areas are in the ratio 8: 5. show that the ratio between radius of their bases to
their height is 3:4​

Answers

Answered by mddilshad11ab
115

\huge{\underline{\purple{\rm{Solution:}}}}

\large{\underline{\red{\rm{Given:}}}}

  • \rm{The\: ratio\:of\: their\:C.S.A=8:5}

\large{\underline{\red{\rm{To\: Find:}}}}

  • \rm{Show\:the\: ratio\:bw\: radius\:and\: height}

\large{\underline{\red{\rm{Formula\: used:}}}}

\small{\boxed{\green{\rm{CSA\:of\: cyclinder=2\pi\:r\:h}}}}

\small{\boxed{\green{\rm{CSA\:of\:cone=\pi\:r\:l}}}}

\small{\underline{\red{\rm{As\:per\:the\: above\: information:}}}}

\rm{\implies Ratio=\dfrac{C.S.A\:of\: cyclinder}{C.S.A\:of\:cone}=\dfrac{8}{5}}

\rm{\implies Ratio=\dfrac{2\pi\:r\:h}{\pi\:r\:l}=\dfrac{8}{5}}

\rm\purple{\implies \dfrac{h}{l}=\dfrac{4}{5}}

  • \rm{Squaring\:on\:both\: side\:\:here,}

\rm{\implies (\dfrac{h}{l})^2=(\dfrac{4}{5})^2}

\rm{\implies \dfrac{h^2}{l^2}=\dfrac{16}{25}}

\rm{\implies l^2=(\dfrac{25}{16})\:h^2}

  • \rm\green{\boxed{l^2=h^2+r^2}}

\rm{\implies h^2+r^2=(\dfrac{25}{16})\:h^2}

\rm{\implies r^2=(\dfrac{25}{16})\:h^2-\:h^2}

\rm{\implies r^2=\dfrac{25\:h^2-16\:h^2}{16}}

\rm{\implies (\dfrac{r}{h})^2=(\dfrac{3}{4})^2}

Hence,

\rm\red{\implies \dfrac{r}{h}=\dfrac{3}{4}}

Answered by Anonymous
36

\huge\underline{ \mathrm{ \red{QueS{\pink{tiOn}}}}}

A right circular cylinder and a cone have equal bases and equal heights. If their curved surface areas are in the ratio 8: 5. show that the ratio between radius of their bases to their height is 3:4

━━━━━━━━━━━━━━━━━━━━━━━━

  \large\underline{ \underline{ \blue{ \bold {AnsweR}}}}

Ratio of Radius and height = \bf\:\frac{3}{4}=3:4

\huge{ \underline{ \purple{ \bold{ \underline{ \mathrm{ExPlanATiOn }}}}}}

  \large\underline{ \underline{ \red{ \bold {Given}}}}

  • Ratio of CSA is given = 8:5.

  • circular cylinder and cone have same base and equal height.

  \large\underline{ \underline{ \red{ \bold {To \:Find}}}}

We need to show that the ratio of Radius and height is 3:4.

⠀⠀⠀⠀⠀\huge\underline{ \underline{ \orange{ \bold{sOluTiOn}}}}

⠀⠀⠀⠀⠀

  • Let the Radius be r and height be h .
  • Let the slent height be l.

\: \mapsto \boxed{ \green {\bf{csa \: of \: cone \:  =  \pi \: rl}}}

Ratio = \bf\:\frac{CSA\: of\: cylinder}{CSA\:of\:cone}

\bf\:\mapsto\:\frac{h}{l}=\frac{4}{5}

⠀⠀⠀⠀⠀squaring on both the sides.

\bf\:\mapsto \frac{h {}^{2} }{l {}^{2} } =  \frac{16}{25}  \\  \\ \bf\:\mapsto \: l {}^{2} =  (\frac{25}{16} ) h {}^{2}  \\  \\ \bf\:\mapsto \: h {}^{2}  +  {r}^{2}  =(  \frac{25}{16}) h {}^{2}   \\  \\ \bf\:\mapsto \:  {r}^{2}  =  \frac{9}{16}  {h}^{2} \\  \\  \bf\:\mapsto \:  \frac{ {r}^{2} }{ {h}^{2} } = ( \frac{3}{4} ) {}^{2}  \\  \\\mapsto{\boxed{\blue{ \bf\: {\frac{r}{h}  =  \frac{3}{4} }}}}<strong> </strong>

⠀⠀

Hence, the ratio of Radius and height =3:4.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions