Math, asked by avanthikav28, 3 months ago

a right circular cylinder has height of 8cm and radius of 7cm. find its a) curved surface b)total surface area​

Answers

Answered by BrainlyRish
2

Given : A right circular cylinder has height of 8cm and radius of 7cm.

Need To Find : Curved Surface area and Total Surface Area .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Finding Total Surface Area of Cylinder :

⠀⠀⠀⠀⠀Formula for Total Surface Area is Given by :

\underline {\frak{\dag As, \:We\:know\:that,\:}}\\

\qquad \quad \underline {\boxed {\sf{\star Total \:Surface \:Area\:_{(Cylinder)} = 2 \pi r (r + h) \:sq.units}}}\\

Where ,

  • r is the Radius of Cylinder h is the Height of Cylinder & \pi = \dfrac{22}{7}.

\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

:\implies \sf{ Total \:Surface \:Area = 2 \times \pi  \times 7 ( 7 + 8) }\\\\:\implies \sf{ Total \:Surface \:Area = 2 \times \pi  \times 7 \times 15  }\\\\ :\implies \sf{ Total \:Surface \:Area = 2 \times \dfrac{22}{\cancel{7}}  \times \cancel {7}\times  15 }\\\\ :\implies \sf{ Total \:Surface \:Area = 2 \times 22  \times 15 }\\\\:\implies \sf{ Total \:Surface \:Area =  44  \times 15 }\\\\\underline {\boxed{\pink{ \mathrm {  Total \:Surface\:Area\:= 660\: cm^{2}}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {Hence, \: Total \:Surface \:Area\:of\:Cylinder \:is\:\bf{660\: cm^{2}}}}}\\

❍ Finding Curved Surface Area of Cylinder :

⠀⠀⠀⠀⠀Formula for Curved Surface Area is Given by :

\underline {\frak{\dag As, \:We\:know\:that,\:}}\\

\qquad \quad \underline {\boxed {\sf{\star Total \:Surface \:Area\:_{(Cylinder)} = 2 \pi rh \:sq.units}}}\\

Where ,

  • r is the Radius of Cylinder h is the Height of Cylinder & \pi = \dfrac{22}{7}.

\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

:\implies \sf{ Curved \:Surface \:Area = 2 \times \dfrac{22}{7}  \times 7 \times  8 }\\\\:\implies \sf{ Curved \:Surface \:Area = 2 \times \dfrac{22}{\cancel{7}}  \times \cancel {7}\times  8 }\\\\ :\implies \sf{ Curved \:Surface \:Area = 2 \times 22  \times   8 }\\\\:\implies \sf{ Curved \:Surface \:Area = 44  \times   8 }\\\\\underline {\boxed{\pink{ \mathrm { Curved \:Surface\:Area\:= 352\: cm^{2}}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {Hence,  \:Curved \:Surface \:Area\:of\:Cylinder \:is\:\bf{352\: cm^{2}}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions