Math, asked by sunyleone, 11 months ago

A right triangle, whose base and height are 15cm and 20cm respectively is made to revolve about its hypotenuse. Find the volume and surface area of the double cone so formed​

Answers

Answered by Anonymous
103

\huge\frak\red{R}\frak\orange{a}\frak\green{d}\frak\blue{h}\frak\purple{e} \huge\frak\red{R}\frak\orange{a}\frak\green{d}\frak\blue{h}\frak\purple{e}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

⎟⎟ ✪✪ QUESTION ✪✪ ⎟⎟

\\

Gopi buys a fish from a shop for his aquarium. The shopkeeper takes out one fish at random from a tank containing 5 male fish and 8 female fish. What is the probability that the fish taken out is a male fish?

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

⎟⎟ ✰✰ ANSWER ✰✰ ⎟⎟

\\

\tt{Let\:ABC\:be\:right \:angled \:triangle}

\tt{AB\:=\:15cm}

\tt{AC\:=\:20cm}

\\

\underline\bold\purple{Using:Thales\:theorem\:in\:\triangle\:ABC}

\\

:\implies\:\tt{BC^2\:=\:AB^2\:+\:AC^2}

:\implies\:\tt{BC^2\:=\:15^2\:+20^2}

:\implies\:\tt{BC^2\:=\:225\:+\:400}

:\implies\:\tt{BC^\:=\:625}

:\implies\:\tt{BC\:=\:\sqrt{625}}

:\implies\:\tt{BC\:=\:25cm.}

\\

\tt{Let,}

  • \huge\tt{OA\:=\:x}
  • \huge\tt{OB\:=\:y}

\\

In triangles ABO and ABC, we have ∠BOA = ∠BAC and ∠ABO = ∠ABC

\\

So, by angle - angle - criterion of similarity, we have ∆BOA ~ ∆BAC

\\

\huge\tt{\:\:\frac{BO}{BA}\:=\:\frac{OA}{AC}\:=\:\frac{BA}{BC}}

\\

:\implies\:\tt{\frac{y}{15}\:=\:\frac{x}{20}\:=\:\frac{15}{25}}

:\implies\:\tt{\frac{y}{15}\:=\:\frac{x}{20}\:=\:\frac{3}{5}}

:\implies\:\tt{\frac{y}{15}\:=\:\frac{3}{5}\:and\:\frac{x}{20}\:=\:\frac{3}{5}}

:\implies\:\tt{y\:=\:\frac{3}{5}\:×\:15\:and\:x\:=\:\frac{3}{5}\:×\:20}

:\implies\:\tt{y\:=\:9\:and\:x\:=\:12}

\\

Thus, we have

\:\:\:\:OA = 12cm and OB = 9cm. Also OC = BC - OB = 25 - 9 = 16cm.

When the ABC is revolved about the hypotenuse, we get a double cone as shown in the attachment.

\\

Volume of double cone = volume of the cone CAA` + volume of the cone BAA`

\\

\tt{ =  \frac{1}{3} \pi {  (OA)}^{2}  \times OC +  \frac{1}{3} \pi {(OA)}^{2}  \times OB}

 \tt{=  \frac{1}{3} \pi \times  {12}^{2} \times 16 +  \frac{1}{3}  \pi \times  {12}^{2}  \times 9}

\tt{=  \frac{1}{3} \pi \times 144(16 + 9)}

\tt{=  \frac{1}{3}  \times 3.14 \times 144 \times 25 {cm}^{3}}

\tt{ = 3768 \:  {cm}^{3} }

\\

Surface area of the doubled cone = (C.S.A. of cone CAA`) + (C.S.A. of cone BAA`)

\\

\tt{=\:(\pi\:×\:OA\:×\:AC)\:+\:(\pi\:×\:OA\:×\:AB)}

\tt{=\:(\pi\:×\:12\:×\:20)\:+\:(\pi\:×\:12\:×\:15)\:cm^2}

\tt{=\:420\:\pi\:cm^2}

\tt{=\:420\:×\:3.14cm^2}

\tt{=\:1320cm^2.}

\\

{\red{\boxed{I\:hope\:it\:will\:help\:you}}}

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Answered by Anonymous
47

Step-by-step explanation:

When a right-angled triangle is revolved around its hypotenuse, a double cone is formed with same radius but with different heights.

it is given that, AB = 15 cm, AC = 20 cm

Let, OB = x and OA = y

Observe from the figure,

In right-angled triangle ABC,

By Pythagoras theorem [Hypotenuse²  = Base²  + Perpendicular² ]

BC²  = AC² + AB²

⇒ BC² = 20²  + 15²

⇒ BC²  = 400 + 225

⇒ BC² = 625

⇒ BC = 25 cm

In ΔOAB

AB² = OA²  + OB²

⇒ 15²  = x²  + y²  ……(1)

In ΔAOC

AC²  = OA²  + OC²

⇒ 20²  = y² + (BC – OB)²

⇒ 400 = y²  + (25 – x)²

⇒ 400 = y²  + 625 – 50x + x²

⇒ 400 = 15² + 625 – 50x

⇒ 400 = 225 + 625 – 50x

⇒ 50x = 450

⇒ x = 9 cm

from equation (1),

15²  = 9²  + y²

⇒ y² = 225 – 81

⇒ y² = 144

⇒ y = 12 cm

Also, OC = 25 – x = 25 – 13 = 12 cm²

Now, Volume of cone , V = 1/3 πr²h

Hence, volume of double cone 

= 1/3 π(OA)² × BO + 1/3 π(OA)² × OC

= 1/3 π(12)² × (OB + OC)

= 1/3 × 3.14 × 144 × 25

= 3768 cm³

Curved surface area of cone = πrl

Surface area of double cone = CSA of left cone + CSA of right cone

= π(OA)(AB) + π(OA)(AC)

= 3.14 × 12 × (15 + 20)

= 1318.8 cm²

Similar questions