Math, asked by IssindraNaVMe, 1 year ago

a right triangle whose sides are 6cm and 8 cm ( other than hypotenuse ) is made to revolve about its hypotenuse. find the volume and surface area of the double cone so formed.

Answers

Answered by sawakkincsem
60

The double cone so formed the right angled triangle ABC 


Hypotenuse AC = underoot 6 square + 8 square  


underoot 36 + 64 


underoot 100 


= 10 cm  

 


Area of ΔABC = ½ x AB x AC 


½ x AC x OB = ½ x 6 x 8 


½ x 10 x OB = 24 


OB = 4.8 cm  


Volume of double cone = volume of cone 1 + volume  of cone 2  


= 1/3 π r square h1 + 1/3π r square h2 


= 1/3π r square (h1+h2) 


= 1/3π r square (OA+OC) 


= 1/3 x 22/7 x (4.8) square x 10 


= 241.3 cm cube 


Surface area of double cone = surface area of cone 1 + surface area of cone 2 


π rl1 + π rl2 


π r (6+8) 


= 22/7 x 4.8 x 14 


= 211.2 cm square

Answered by Rish801234
8

Answer:

The double cone so formed the right angled triangle ABC 

Hypotenuse AC = underoot 6 square + 8 square  

= underoot 36 + 64 

= underoot 100 

= 10 cm  

 

Area of ΔABC = ½ x AB x AC 

½ x AC x OB = ½ x 6 x 8 

½ x 10 x OB = 24 

OB = 4.8 cm  

Volume of double cone = volume of cone 1 + volume  of cone 2  

= 1/3 π r square h1 + 1/3π r square h2 

= 1/3π r square (h1+h2) 

= 1/3π r square (OA+OC) 

= 1/3 x 22/7 x (4.8) square x 10 

= 241.3 cm cube 

Surface area of double cone = surface area of cone 1 + surface area of cone 2 

π rl1 + π rl2 

π r (6+8) 

= 22/7 x 4.8 x 14 

= 211.2 cm square

Similar questions