A right∆ ,whose sides are 3 cm and 4 cm (other than hypotenuse) is made to revolve about it's hypotenuse. Find the volume and surface area of the double cone formed( choose value of π as found appropriate)
Pls don't spam
Answers
Here it is....................... :D
The right ∠d Δ has sides 3 cm and 4 cm and a hypotenuse .
By Pythagoras theorem :
h² = 3² + 4²
⇒ h² = 9 + 16
⇒ h² = 25
⇒ h = 5
The triangle is revolved about hypotenuse .
Let Δ be ABC .
AC = 5
Let the other Δ be ADC and the lines AC , BD meet at O .
Area of Δ ABC = 1/2 × AB × BC = 1/2 × AC × BO
⇒ AB × BC = AC × BO
⇒ 3 × 4 = 5 × BO
⇒ BO = 12/5
In Δ ABC :
AO² = AB² - OB²
⇒ AO² = 3² - ( 12/5 )²
⇒ AO² = 9 - 144/25
⇒ AO² = ( 225 - 144 )/25
⇒ AO² = 81/25
⇒ AO = 9/5
CO² = 4² - 12²/5²
⇒ CO² = 16 - 144/25
⇒ CO² = 256/25
⇒ CO = 16/5
Volume of double cone :
Volume = 1/3 π r² h + 1/3 π r² h
= 1/3 π ( 12²/5² × 9/5 + ( 12²/5² ) × 16/5 )
= 1/3 π × 144/25 ( 9/5 + 16/5 )
= 1/3 π × 144/25 × 25/5
= 48/5 π
= 48/5 × 3.14
= 30.14 cm³
Surface area :
C.S.A = π r l + π r l
⇒ π ( 12/5 × 3 + 12/5 × 4 )
⇒ π 12/5 × 7
⇒ 3.14 × 84/5
⇒ 3.14 × 16.8