Physics, asked by ameyagangane13, 11 months ago

A ring of radius 20 cm and mass 5 kg rolls on a smooth horizontal surface at the rate of 2 m/s. Rotational kinetic energy of a ring is
10 J
20 J
30 J
40 J

Answers

Answered by adithyassureshkumar
2

Answer:

Explanation:

ROTATIONAL KINETIC ENERGY = 1/2 I ω²

  MOMENT OF INERTIA FOR RING = MR²        (RADIUS = 20 cm = 0.2 m)

                                   =  5 * 0.2 = 1 kgm²

           ANGULAR VELOCITY ω = V / R ( V IS THE LINEAR VELOCITY)

                                                 ω = 2/0.2 = 10 rad/s

ROTATIONAL KINETIC ENERGY =1/2 * 1 * 10²

                                                      = 50 J

Answered by Anonymous
82

{\underline{\sf{Given}}}

Radius of ring = 20cm = 0.2m

Mass of ring = 5kg

It rolls on a smooth surface at the rate = 2m/s

{\underline{\sf{To\:Find}}}

Rotational kinetic energy of a ring

{\underline{\sf{Solution}}}

Let consider that ring is rotated about an Axis pperpendicular to plane passing through the centre of mass.

⇒ I = MR²

We know that Kinteic energy of a rolling body is :

\sf{K.E.=\dfrac{1}{2}mv{}^{2}+\dfrac{1}{2}I\omega}

\sf{\implies \frac{1}{2} \times 5 \times {2}^{2} + \frac{1}{2} \times 5 \times {0.2}^{2} \times \frac{{2}^{2}}{{0.2}^{2}}}\\

\sf{\implies 10 + \frac{1}{2} 5 \times 0.04 \times \frac{400}{4} }\\

\sf{\implies 10 + 5 \times 0.02 \times 100}\\

{\boxed{\sf{\implies 10 + 10 = 20 \; J}}}\\

More About rolling motion

When a body performs translatory motion as well as rotatory motion then it is known as rolling motion.

Similar questions