Math, asked by aryaabhinav1920, 10 months ago

A road roller is cylindrical in shape. It's circular end has a diameter 0.7 m and its width is 2 m. Find the least number of complete revolutions that the roller must make in order to level a playground measuring 80 m by 44m?​

Answers

Answered by amirgraveiens
0

800 is the least number of complete revolutions that the roller must make in order to level a playground measuring 80 m by 44m.

Step-by-step explanation:

Given:

Here, diameter =0.7 m

radius =\frac{diameter}{2}

radius =\frac{0.7}{2}

radius = 0.35 m

height = 2 m

Total area = 80\times 44

                  = 3520 m^2

Curved surface area = 2πrh

                                    = 2\times \frac{22}{7} \times 0.35 \times 2

                                    = \frac{30.8}{7}

                                    = 4.4 m^2

Now, no. of revolutions = \frac{Total area }{Curved surface area}

                                         = \frac{3520}{4.4}

                                         = 800

Therefore, 800 is the least number of complete revolutions that the roller must make in order to level a playground measuring 80 m by 44m.

                                       

Answered by guptasingh4564
0

The least number of complete revolutions that the roller must make in order to level a playground is 800

Step-by-step explanation:

Give,

Diameter of the roller cylindrical shape=0.7\ m

                                                  ∴Radius=\frac{0.7}{2}=0.35\ m

                                        And Width(h)=2\ m

Length and width of the playground is 80\ m\ and\ 44\ m

Area of the Playground=80\times 44

                                      =3520\ m^{2}

Area of the roller cylindrical shape=2\pi rh

                                                         =2\times \frac{22}{7}\times 0.35\times 2

                                                         =4.4\ m^{2}  

∴ The least number of complete revolutions that the roller must make in order to level a playground is =\frac{3520}{4.4}

                                       =800

So, The least number of complete revolutions that the roller must make in order to level a playground is 800

Similar questions