Math, asked by rafin366, 1 year ago

A road that is 7 m wide surrounds a circular path whose circumference is 352 m. what will be the area of the road?

Answers

Answered by kishanswaroopya
2
GIVEN

A road width is 7 m.
Circumference of circular path = 352 m
r = radius of circular path.
pi = 22 / 7
Therefore, 2 pi r = 352
r = 352 / 2 pi
r = 176 / pi
r = (176 x 7) / 22
r = 8 x 7
r = 56 m
Therefore, diameter of circular path
= 2 x 56
= 112 m
As diameter of circular path is equal to the length of the road.
Therefore, length of the road = 112 m
A road width is 7 m. (as given)
Area of road = length x width
= 112 x 7
= 784 m^2.
Answered by Anonymous
144

Let the radius of the park be r m

\:

\:\:\:\:\:\:\:\:\:\:Then, its circumference = 2πr

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mapsto\: \sf\bold 2\pi r=352

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mapsto\:\sf 2×\bf\dfrac{22}{7}×r=352

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mapsto\:\sf r=\bigg(352×\bf\dfrac{7}{44}\bigg)=56

\:\:

Thus,

  • \sf\bold Inner\: radius = 56 m,
  • \sf\bold Outer \:radius = (56+7)=63m.

\:\:

\sf \:\:\:\:Area\: of\: the\: road\: = \:\pi[(63)²-(56)²]m²

\:\:

\:

\sf \:\:\:\:\:\:\:\:\:=\:\bf\dfrac{22}{7}×(63+56)(63-56)m²

\:\:

\:

\sf \:\:\:\:\:\:=\:\bigg(\bf\dfrac{22}{7}×119×7\bigg)m²=2618m²

\:\:

\:\:\:\:\:\:\:\:─────────────────────

{\large{\frak{\pmb{\underline{Related\: points \:and \:formulas}}}}}

\:

\underline{\underline{\maltese\:\: \textbf{\textsf{Circle}}}}

The set of points which are at a constant distance of r units from a fixed point O is called a circle with centre O and radius = r units.

\:

\underline{\underline{\maltese\:\: \textbf{\textsf{Circumference}}}}

  • The perimeter (or length of boundary) of a circle is called its circumference.

\:

\underline{\underline{\maltese\:\: \textbf{\textsf{Radius}}}}

  • A line segment joining the centre of a circle and a point on the circle is called radius of the circle.

\:

\underline{\underline{\maltese\:\: \textbf{\textsf{Chord}}}}

  • A line segment joining any two points on a circle is called a chord of the circle.

\:

\underline{\underline{\maltese\:\: \textbf{\textsf{Diameter}}}}

  • A chord of a circle passing through its centre is called a diameter of the circle.

\:\:\: \small\green{ \large\star}Diameter is the longest chord of the circle.

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\boxed{\sf{Diameter=\frak{\red{2×radius}}}}}

\:

\underline{\underline{\maltese\:\: \textbf{\textsf{Secant}}}}

  • A line which intersects a circle at two points is called a secant of a circle.

\:

\underline{\underline{\maltese\:\: \textbf{\textsf{Arc}}}}

  • A continuous piece of a circle is called an Arc of the circle.

\:

\underline{\underline{\maltese\:\: \textbf{\textsf{Central\:Angle}}}}

  • An angle subtended by an Arc at the centre of a circle is called its Central angle.

\:

\underline{\underline{\maltese\:\: \textbf{\textsf{Semicircle}}}}

  • A diameter divides circle into two equal arcs. Each of these arcs is called a semicircle.

\:

\underline{\underline{\maltese\:\: \textbf{\textsf{Quadrant}}}}

  • One fourth of a circle disc is called a quadrant.

\:\:\: \small\blue{ \large\star}The central angle of quadrant is 90°

\:\:

F O R M U L A E,

\orange\longrightarrow\sf Circumference\: of\: the \:circle =2\pi r

\pink\longrightarrow\sf Area\: of \:the \:circle=\pi r²\:\:\:\:or\:\:\:\bf\dfrac{\pi d²}{4}

\purple\longrightarrow\sf Area\: of \:the \:semicircle=\dfrac{1}{2}\pi r²

\red\longrightarrow\sf Perimeter \:of \:the\: semicircle=(\pi r+2r)

Attachments:
Similar questions