Physics, asked by askayadav0675, 8 months ago

A rubber ball of mass 50 g falls from height of 1 m and rebound to height of 0.5 m . Find the impulse and average force between the ball and the ground . If the time for which was ball in the contact with ground is 0.1 sec.
please tell me the answer of this question asa soon as possible .

and plzz send the solution done in notebook done with pen or pensil plzzz guys and i will mark briliantist
plzz give answer as soon as possible

Answers

Answered by TheVenomGirl
15

AnswEr :

\bullet \: \textsf {Impulse is{ \textbf{0.225 Ns}}}

\bullet \: \textsf {Force is{ \textbf{2.25 N}}}

 \\

GivEn :

 \\

  • \sf Mass \: of \: Ball  \: = 50 \:  g

 \\

  • \sf \: Height = 1  \: m

 \\

  • \sf Time = 0.1 s

 \\

  • \sf Initial\: velocity = 0 \: m/s

 \\

  • \sf \: Rebound \:  height = 0.5  \: m

 \\

To find :

 \\

  • Impulse

  • Average force

 \\

SoluTion :

 \\

⠀⠀⠀We'll find the final velocity (v) at first !

 \\

Now,

 \\

Apply the formula of equation of motion,

 \\

: \implies\sf  \: \: {v}^{2} =  {u}^{2} + 2gh \\  \\  \\

: \implies\sf  \: \: {v}^{2}  = 0+2 \times 9.8 \times 0.1 \\  \\  \\

: \implies\sf  \: \: {v}^{2}  =  \sqrt{1.96 }  \\  \\  \\

: \implies\sf  \:  \: { \boxed{ \boxed{ \sf{ \red{v = 1.4 m/s}}}}} \:  \bigstar\\  \\

Now, it is also given that in the second case the final velocity of the Ball is 0 m/s & we've to find the initial velocity!

 \\

Now,

:\implies \sf \:  \:  {v}^{2}  = {u}^{2}  -2gh \\  \\  \\

:\implies \sf \:  \:0= {u}^{2}  - 2 \times 9.8 \times 0.5 \\  \\  \\

:\implies \sf \:  \: {u}^{2}  =9.8 \\  \\  \\

:\implies \sf \:  \:{ \boxed{ \boxed{ \sf{ \purple{u=3.1 \: m/s}}}}} \:  \bigstar  \\  \\

Now, we know the relation b/w impulse and change in the linear momentum!

 \\

\bigstar \sf \: Req \:  Impulse = Change \:  in \:  linear  \: momentum \\  \\  \\

: \implies \sf \:  \: mv - m( - u) \\  \\  \\

: \implies \sf \:  \:m(v+u) \\  \\  \\

: \implies \sf \:  \:0.05 \times (1.4+3.1) \\  \\  \\

: \implies \sf \:  \:{ \boxed{ \boxed{ \bf{ \pink{ \mid \mid0.225 \: Ns \mid \mid}}}}} \:  \bigstar \\  \\

Apply formula of force required,

  \:  \:  \:  \:  \:  \: \star \: \boxed{\sf{ \blue{Force = \dfrac{Impulse}{Time} }}} \\  \\

 \sf : \implies \: Force = \dfrac{Impulse}{Time} \\  \\  \\

\sf : \implies \: Force = \dfrac{0.225}{0.1} \\  \\  \\

\sf : \implies \: { \boxed{ \boxed{ \bf{ \red{ \mid\mid \: Force = 2.25 \: N \mid \mid}}}}} \:  \bigstar \\  \\

⠀⠀Therefore,

\bullet \: \textsf {Impulse is{ \textbf{0.225 Ns}}}

\bullet \: \textsf {Force is{ \textbf{2.25 N}}}

Similar questions