Math, asked by SamiaKhan54, 6 months ago

A satellite in a circular orbit of radius R has a period of 4 hours. Another satellite with orbital radius 3R around the, same planet will have a period (in hours) ​

Answers

Answered by ItzDαrkHσrsє
60

We know that Kepler's Third law states that, The square of it's period of revolution around Sun is directly proportional to cube of mean distance of a planet from the Sun. Then,

\longrightarrow\sf{ {T}^{2}  ∝ {r}^{3} }

i.e,

\longrightarrow\sf{ \frac{ {T}^{2} }{ {R}^{3} }  = Constant \: K \: .... \: (1)}

\longrightarrow\sf{ ( { \frac{T_1}{T_2} )}^{2} = ( { \frac{R_2}{R_1} )}^{3}  }

\longrightarrow\sf{  \frac{T_2}{T_1}  =  (\frac{R_2}{R_1} ) {}^{\frac{3}{2} } }

Thus, we get,

\star \: \boxed{\sf\green{T_2 = t_1( \frac{R_2}{R_1} ) {}^{ \frac{3}{2} } }}

Here,

  • \sf{R_1 =R}

  • \sf{T_1 = 4}

  • \sf{R_2 = 3R}

Thus, Period of second satellite will be:

\longrightarrow\sf{t_2 = 4( \frac{3R}{R} ) {}^{ \frac{3}{2} } }

\longrightarrow\sf{t_2 = 4 \times 3 {}^{ \frac{3}{2} } }

\longrightarrow{\underline{\boxed{\sf{T_2 = 4 \sqrt{27} \: hr}}}}

Thus,

  • The same planet will have a period of 4 27 hours.
Answered by Anonymous
40

\huge{ \underline { \rm{ \large{ \purple{Given:}}}}}

Satellite in a circular orbit of radius R has a period of 4 hours

Another satellite with orbital radius 3R

\huge{ \underline{ \rm{ \large{ \green{Find:}}}}}

Time of second satellite???

\huge{ \underline{ \rm{ \red{ \large{Solution:}}}}}

From Kepler's 3rd law T² is proportional to r³, the orbital period squared is proportional to the distance cubes

T² ∝ R³

T² ∝ R³(T1/T2) ² = (R1/R2) ³

{ \implies{ \sf{ \frac{ {(4)}^{2} }{ {(T _{2})}^{2} } = \frac{ {(R)}^{3} }{ {(3R)}^{3} } }}}

{ \implies{ \sf{ {( T_{2} )}^{2} = 27 \times 16}}}

{ \implies{ \sf{ { T_{2} } = \sqrt{27 \times 16} }}}

{ \implies{ \sf{ \red{ T_{2} = 4 \sqrt{27} hours }}}}

Therefore,

Time of second satellite = 4√27 hours.

_______________________________

Similar questions