A sector of circle centre O Containing an angle Φ° .Prove that perimeter of the shaded region is r(tanΦ +secΦ + π Φ/180 -1 ) ° and area of the shaded region is r^2 /2 (tanΦ- π Φ/180)
Attachments:
Answers
Answered by
359
Hey there!
Perimeter of the shaded region
= arc AC + AB + BC
Arc AC = Φ * 2πr / 360
= Φ π r /180
Tan Φ = AB /OA
= AB /r
AB = r tan Φ
Similarly,
BC = OB -OC
= rsec Φ -r
= r(secΦ-1)
☞Perimeter = arc AC+AB+AC
= Φπr/180+ rtanΦ + rsecΦ-r
= r(tanΦ +sec Φ +π Φ/180-1)
☆Hence, your first part is proved !
☞ Area :
= Area of right triangle OAB - Area of
sector
= 1/2 *OA *AB - Φ *πr^2 /360
= r^2tanΦ/2 - πr^2 Φ /360
= r^2 /2 ( tan Φ -π Φ/180)
Hence, proved!
#hope it helps!
Perimeter of the shaded region
= arc AC + AB + BC
Arc AC = Φ * 2πr / 360
= Φ π r /180
Tan Φ = AB /OA
= AB /r
AB = r tan Φ
Similarly,
BC = OB -OC
= rsec Φ -r
= r(secΦ-1)
☞Perimeter = arc AC+AB+AC
= Φπr/180+ rtanΦ + rsecΦ-r
= r(tanΦ +sec Φ +π Φ/180-1)
☆Hence, your first part is proved !
☞ Area :
= Area of right triangle OAB - Area of
sector
= 1/2 *OA *AB - Φ *πr^2 /360
= r^2tanΦ/2 - πr^2 Φ /360
= r^2 /2 ( tan Φ -π Φ/180)
Hence, proved!
#hope it helps!
Anonymous:
★ CONTENT QUALITY SUPPORT ★
Answered by
108
I think u got it
..
..
..
thank u
..
..
..
thank u
Attachments:
Similar questions