Math, asked by suman86aaradhya, 6 months ago

A shopkeeper sold two tables for rupees 1485 each on one he gains 10% and on other he lost 10% gain or loss in the whole transaction​

Answers

Answered by varsha5160
3

Answer:

Profit=1485-1350= ₹135 . let the cost of one table which loss 10% be y. Loss=10/100(y) =0.1y. So selling price of the table =y-0.1y=0.9y=1485=> y=14850/9= ₹1650.

Answered by TheProphet
25

S O L U T I O N :

\underline{\bf{Given\::}}

A shopkeeper sold two tables for Rs.1485 each on one he gains 10% & on other he lost 10% .

\underline{\bf{Explanation\::}}

\underbrace{\sf{1^{st}\:Case\::}}

  • Selling price of one table, (S.P) = Rs.1485
  • Gain on a table, (P) = 10%
  • Cost price = ?

Using formula of the cost price when given profit;

\boxed{\bf{Cost\:price = \bigg(\frac{100}{100 + profit\%} \bigg)\times S.P.}}

A/q

\mapsto\tt{Cost\:price = \bigg(\dfrac{100}{100+10} \bigg) \times 1485}

\mapsto\tt{Cost\:price = \bigg(\dfrac{100}{110} \bigg) \times 1485}

\mapsto\tt{Cost\:price =\dfrac{10\cancel{0}}{11\cancel{0}}  \times 1485}

\mapsto\tt{Cost\:price = \dfrac{10}{\cancel{11}}\times \cancel{1485}}

\mapsto\tt{Cost\:price = Rs.(10 \times 135)}

\mapsto\bf{Cost\:price = Rs.1350}

\underbrace{\sf{2^{nd}\:Case\::}}

  • Selling price of other table, (S.P) = Rs.1485
  • Loss on a table, (L) = 10%
  • Cost price = ?

Using formula of the cost price when given loss;

\boxed{\bf{Cost\:price = \bigg(\frac{100}{100 - loss\%} \bigg)\times S.P.}}

\mapsto\tt{Cost\:price = \bigg(\dfrac{100}{100-10} \bigg) \times 1485}

\mapsto\tt{Cost\:price = \bigg(\dfrac{100}{90} \bigg) \times 1485}

\mapsto\tt{Cost\:price =\dfrac{10\cancel{0}}{9\cancel{0}}  \times 1485}

\mapsto\tt{Cost\:price = \dfrac{10}{\cancel{9}}\times \cancel{1485}}

\mapsto\tt{Cost\:price = Rs.(10\times 165)}

\mapsto\bf{Cost\:price = Rs.1650}

Now,

Total Selling price for both tables = Rs.1485 + Rs.1485 = Rs.2970 .

Total Cost price for both tables = Rs.1350+ Rs.1650 = Rs.3000 .

S.P. < C.P.

→ Loss = Cost price - Selling price

→ Loss = Rs.3000 - Rs.2970

→ Loss = Rs.30

As we know that formula of the loss%;

\boxed{\bf{Loss\% = \frac{Loss \times 100}{C.P} }}

→ Loss% = 30 × 100 / 3000

→ Loss% = 3000/3000

Loss% = 1%

Thus,

The loss in whole transaction will be 1% .

Similar questions