A simple pendulum has a time period T. The
pendulum is cornpletely immersed in a
non viscous liquid ,whose density is 1/20th of that
of the material of the bob. Then the time period
of the pendulum immersed in the liquid is:
Answers
So the simple pendulum has a time period,
Recall
Now the pendulum is completely immersed in a non viscous liquid, whose density is of that of the material of the bob.
The fig. shows the FBD of the bob at mean position.
- is weight of bob.
- is restoring force produced in the string of length
- is upthrust.
We get,
Let be volume of bob. So
The upthrust equals weight of water displaced by the bob. So,
Hence the new time period,
So the simple pendulum has a time period,
\sf{T=2\pi\sqrt{\dfrac{m}{k}}}T=2π
k
m
Recall \sf{kl=mg.}kl=mg.
Now the pendulum is completely immersed in a non viscous liquid, whose density is \sf{\left(\dfrac{1}{20}\right)^{th}}(
20
1
)
th
of that of the material of the bob.
\sf{\rho_L=\dfrac{\rho_B}{20}}ρ
L
=
20
ρ
B
The fig. shows the FBD of the bob at mean position.
\sf{mg}mg is weight of bob.
\sf{k'l}k
′
l is restoring force produced in the string of length \sf{l.}l.
\sf{U}U is upthrust.
We get,
\sf{\longrightarrow mg=k'l+U}⟶mg=k
′
l+U
\sf{\longrightarrow k'l=mg-U}⟶k
′
l=mg−U
Let \sf{V}V be volume of bob. So \sf{m=\rho_BV.}m=ρ
B
V.
The upthrust \sf{U}U equals weight of water displaced by the bob. So,
\sf{\longrightarrow k'l=\rho_BVg-\rho_LVg}⟶k
′
l=ρ
B
Vg−ρ
L
Vg
\sf{\longrightarrow k'l=\left(\rho_B-\rho_L\right)Vg}⟶k
′
l=(ρ
B
−ρ
L
)Vg
\sf{\longrightarrow k'l=\left(\rho_B-\dfrac{\rho_B}{20}\right)Vg}⟶k
′
l=(ρ
B
−
20
ρ
B
)Vg
\sf{\longrightarrow k'l=\dfrac{19}{20}\,\rho_BVg}⟶k
′
l=
20
19
ρ
B
Vg
\sf{\longrightarrow k'l=\dfrac{19}{20}\,mg}⟶k
′
l=
20
19
mg
\sf{\longrightarrow k'l=\dfrac{19}{20}\,kl}⟶k
′
l=
20
19
kl
\sf{\longrightarrow k'=\dfrac{19}{20}\,k}⟶k
′
=
20
19
k
Hence the new time period,
\sf{\longrightarrow T'=2\pi\sqrt{\dfrac{m}{k'}}}⟶T
′
=2π
k
′
m
\sf{\longrightarrow T'=2\pi\sqrt{\dfrac{20}{19}\cdot\dfrac{m}{k}}}⟶T
′
=2π
19
20
⋅
k
m
\sf{\longrightarrow\underline{\underline{T'=T\sqrt{\dfrac{20}{19}}}}}⟶
T
′
=T
19
20