Physics, asked by Lavishkataria, 1 year ago

A simple pendulum of length l has a bob of mass m if it is released from horizontal position then find the velocity of bob at lowest position?

Answers

Answered by Anonymous
7

 \bf \underline{ \underline{ Answer}} :  -  \\  tension(T) = 3mg \\  \\   \underline{  \underline{\bf{step - by - step \: explanation}}} :  -  \\  \\  \underline{ \bf{according \: to \: the \: question}} :  -  \\  \\ length \: of \: pendulam \:  = l \\  \\ mass \: of \: bob \:  = m \\  \\ let \: v \: be \: the \: velocity \: at \: lowest \: point \:  \\   \\ \star \: its \: potential \: energy \: converted \: into \: kinetic \\  \\ energy \\  \\ m \: g \: l \:  =  \frac{1}{2} m {v}^{2}  \\   \\  The \: centrifugal \: acceleration \:  = m \frac{ {v}^{2} }{l}  \\  \\  \implies \: m \:  \frac{2gl}{l}  = 2mg \\  \\ Hence, \: the \: tension \: at \: lowest \: point \:  \\  \\  \implies \: T=  \:mg \:  + 2mg \:  = 3mg

Answered by TheUnsungWarrior
2

\textsf{Given :}

                 \textsf{Length of Pendulum = l}\\\textsf{Mass of Pendulum = m}\\\textsf{Angle at which it is dropped = 90}

\textsf{To find :}

                 \textsf{Velocity of bob at lowest position}

\textsf{Solution :}

\textsf{We know from the work-energy theorem that work done by all the forces}\\\textsf{is equal to the change in the kinetic energy i.e. }

                    \boxed {W_{all forces} = {\Delta} K.E. }

\textsf{Applying this with the given values in the question, we have: }

            \textsf{Wgravity + Wtension = K.E.f - K.E.i  }

            \textsf{Wg + Wt = 1/2 $mv^{2}$  }

\textsf{Initial kinetic energy turns out to be zero as the bob was released from rest.}

              \textsf {mgl = $\frac{1}{2} mv^{2}$ }

                 \textsf{v = $\sqrt{2gl}$ }

\textsf{Hence,}         \boxed {\textsf{v = $\sqrt{2gl}$ }}

Attachments:
Similar questions