Math, asked by lakshiya8318, 10 months ago

a) Simplify: (a + b + c) (a - b -c) (a+b)​

Answers

Answered by EliteSoul
3

Answer :

\longmapsto\sf(a + b + c)(a  - b - c)(a + b) \\\\  \longmapsto\sf a(a - b - c) + b(a - b - c) + c(a - b - c)(a + b) \\\\ \longmapsto\sf  (a {}^{2} - ab - ac + ab - b {}^{2} - bc + ac - bc - c {}^{2})(a + b)  \\\\  \longmapsto\sf (a {}^{2}  - b {}^{2}    - c {}^{2}  - 2bc)(a + b) \\\\  \longmapsto\sf a(a {}^{2}  - b {}^{2} - c {}^{2}   - 2bc) + b(a {}^{2}  - b {}^{2}  - c {}^{2}  - 2bc) \\\\  \longmapsto\bold{ a {}^{3}  - ab {}^{2}  - ac {}^{2}  - 2abc + a {}^{2}b - b {}^{3} - bc {}^{2} - 2b {}^{2}c  }

Answered by tejasgupta
7

Answer:

\boxed{(a^3 -2abc - ab^2 -ac^2 + a^2b - 2b^2c - b^3 -bc^2)}

Step-by-step explanation:

(a+b+c)(a-b-c)(a+b)\\\\= (a^2 -ab -ac + ab - b^2 -bc + ac - bc - c^2)(a+b)\\\\= (a^2 -2bc -b^2 - c^2)(a+b)\\\\= \boxed{(a^3 -2abc - ab^2 -ac^2 + a^2b - 2b^2c - b^3 -bc^2)}

Similar questions