Math, asked by dnshbhat, 11 months ago

a soli wooden cone of diameter 14 cm and vertical height 24cm vertically cut into two equal halves one-half is to be covered by colourful paper at the rate of Rs 7 per square find the total cost of the paper required​

Answers

Answered by suchindraraut17
44

Cost of paper required = Rs. 3640

Step-by-step explanation:

Given,

Diameter = 14 cm   =2\times Radius

Radius = 7 cm

Height = 24 cm

slant height = \sqrt(24^2 + 7^2)

                   = \sqrt(625)

                   = 25 cm

Cost per square cm = Rs.7

Total Surface Area of cone = \pi r(r + l)

                                              = \frac{22}{7} 7 (7 + 25)

                                             =704\ cm^2

Half of total surface area = 352\ cm^2

Since the cone is cut into two halves vertically

Area to be covered with coloured paper = Half of total surface area + Area of triangle on one side

Area of triangle =\frac{1}{2}\times base\times height

                          = \frac{1}{2}\times 14\times 24 [diameter will be considered as base of triangle]

                          = 168\ cm^2

Area to be covered with coloured paper = 352 + 168

                                                                    =  520\ cm^2

Cost of paper required =\textrm{Area to be covered with paper} \times \textrm{Cost per square cm}

                                       = 520 × 7

                                       = Rs. 3640.

Attachments:
Similar questions