Math, asked by bhavyachoubey132, 4 months ago

a solid cone has the height of 10cm and diameter of 20 cm how many spheres of diameter 2cm can be made by melting it​

Answers

Answered by ItsAritrakz22
5

 \large\mathfrak \pink{Solution:-}

 \underline \mathbb{GIVEN:-}

➙Height of the solid cone = 10 cm .

➙Diameter of the solid cone = 20 cm.

So, Radius = 10 cm.

➙Diameter of the sphere = 2 cm.

So, Radius = 1 cm.

 \underline \mathbb{TO  \: FIND:-}

How many spheres can be formed.

  \underline \mathbb{FORMULA:-}

Radius = 2 × Diameter

Volume \:  of \:  the \:   \:  cone =  \frac{1}{3} \pi \: r {}^{2} h \\

Volume  \: of \: the \:  sphere \:  =  \frac{4}{3} \pi \:  {r}^{3}

 \underline \mathbb{BY  \: THE  \: PROBLEM:-}

Volume \:  of \:  the \:    cone =  \frac{1}{3} \pi \: r {}^{2} h \\  \\  \implies \: \frac{1}{3} \pi \: (10) {}^{2} 10 \\  \\  \implies \:  \frac{1}{3} \pi \: 1000\\  \\  \implies \frac{1000\pi}{3}

Volume  \: of \: the \:  sphere \:  =  \frac{4}{3} \pi \:  {r}^{3}  \\  \\ \implies \:  \frac{4}{3} \pi \: (1) {}^{3}  \\  \\  \implies \:  \frac{4\pi}{3}

So \: , total \:  Number \:  of \:  spheres  =  \frac{ \frac{1000\pi}{3} }{ \frac{4\pi}{3} }  \\  \\  \implies \:  \cancel{\frac{1000\pi}{3}  \times  \frac{3}{4\pi}  }\\  \\  \implies \:  250

\underline \mathbb{ANSWER:-}

\implies \:  \boxed{ 250}

Similar questions