Math, asked by sravyaj0814, 8 months ago

A solid cylinder has a total surface area of 462 sq.cm. Its curved surface area is one third of its total surface area. Find the volume of the cylinder.

Answers

Answered by SidhantVerma77
4

Answer:

The Curved Surface Area is 154 cm².

Step-by-step explanation:

Given, Total Surface Area = 462 cm²

Curved Surface Area = 1/3 × 462 cm²

= 154 cm²

The remaining information is not sufficient for finding the answer of your given question.

KINDLY SELECT MY ANSWER AS THE BRAINLIEST ANSWER.

Answered by SarcasticL0ve
9

GivEn:-

  • Total Surface Area of Solid Cylinder = 462cm²

  • It's Curved surface area is one third of its Total Surface Area.

To Find:-

  • Volume of cylinder = ?

SoluTion:-

✠ DIAGRAM:

\setlength{\unitlength}{1 mm}\begin{picture}(5,5)\qbezier(2,3)(8,8)(14,3)\qbezier(2,3)(8,-4)(14,3)\put(2,-27){\line(0,2){30}}\put(14,-27){\line(0,2){30}}\qbezier(2,-27)(8,-35)(14,-27)\qbezier(2,-27)(8,-20)(14,-27)\put(8,-27){\line(0,2){30}}\put(9,-14){$\tt{h}$}\put(9,-29){$\tt{}$}\put(8,-27){\line(2,0){6}}\put(8,3){\line(2,0){6}}\put(15,-14){$\tt{Total\:Surface\;Area = 462cm^{2}}$}\put(9,-34){$\tt{}$}\end{picture}

\dag\;\bf{\underline{\underline{\blue{According\;to\;question:-}}}}

We have total Surface Area of cylinder,

:\implies 2πr( r + h) 2πrh + 2πr²

:\implies 2πrh + 2πr² = 462cm² --(1)

GivEn that,

★ Curved surface area = \sf \dfrac{1}{3} × Total Surface Area

:\implies 2πrh = \sf \dfrac{1}{3} × 462 cm²

:\implies 2πrh = 154 cm²

✠ Now, Substituting value of 2πrh in eq(1) -

:\implies 154 cm² + 2πr² = 462 cm²

:\implies 2πr² = 462 cm² - 154 cm²

:\implies 2πr² = 308 cm²

:\implies 2 × \sf \dfrac{22}{7} × r² = 308 cm²

:\implies r² =  \cancel{308} × \sf \dfrac{7}{ \cancel{22}} \times \dfrac{1}{ \cancel{2}} cm²

✠ Taking sqrt both sides -

:\implies\sf \sqrt{r^2} = \sqrt{49} cm²

:\implies\sf {\underline{\red{r = 7\;cm}}}

✠ Now, Substituting value of r in 2πrh -

:\implies 2πrh = 154 cm²

:\implies 2 × \sf \dfrac{22}{ \cancel{7}} \times \cancel{7} × h= 154 cm²

:\implies h = \sf \cancel{154} × \sf \dfrac{1}{ \cancel{44}}

:\implies\sf {\underline{\red{ h = \dfrac{7}{2} \;cm}}}

▬▬▬▬▬▬▬▬▬▬

✠ Now, Finding Volume of Cylinder -

\dag\;\bf {\underline{\boxed{\purple{Volume\;of\;cylinder = \pi r^2 h}}}}

✠ Substituting Value of r and h -

:\implies\sf \dfrac{ \cancel{22}}{ \cancel{7}} \times \cancel{7} \times 7 \times \dfrac{7}{ \cancel{2}}

:\implies\sf 11 \times 7 \times 7

:\implies\bf {\underline{\purple{539\;cm^3}}}

\dag Hence, Volume of cylinder is 539cm³.

▬▬▬▬▬▬▬▬▬▬

Similar questions