Math, asked by thejaggi1212, 8 months ago


a solid cylinder has T.S. A of 462, sq.cm .Its curved surface area is 1/2 find the volume of
cylinder- (π=22/7)

Answers

Answered by yoshanachaudhary
1

Answer:

By Yoshana Chaudhary

Step-by-step explanation:

The surface area has to be 1/3rd.

SOLUTION

Curved surface area = total surface area / 3.

Curved surface area = 462/3 = 154.

Rest of area = 462 - 154 = 308.

2πr^2 = 308.

r^2 = 308 x 7 / 44 = 49.

r = 7.

2πrh = 154.

h = 154 / 2 x 22 = 7/2.

Volume = πr^2 h = (22/7) x (7^2) x (7/2) = 539.

Volume = 539 cm^3

Answered by Anonymous
3

\bf\large{\underline{qUESTIOn:-}}

a solid cylinder has T.S.A of 462, sq.cm .Its curved surface area is 1/2 find the volume of

cylinder- (π=22/7)

\bf\large{\underline{gIVEn:-}}

  • T.S.A of cylinder = 462 sq.cm
  • Curved surface area = 1/2

\bf\large{\underline{To Find:-}}

  • Volume of cylinder =?

\bf\large{\underline{sOLUTIOn:-}}

  • T.S.A= 462sq.cm
  • C.S.A =1/3 of total surface area.

\bf\large{\underline{aCOORDINg\:To\: qUESTIOn:-}}

\tt→\frac{c.s.a}{t.s.a}=\frac{1}{3}\\\tt→ \frac{2πrh}{2πr(r+h)}=\frac{1}{3}\\\tt→ \frac{h}{r+h}=\frac{1}{3} (on\: reversing)\\\tt→ \frac{r+h}{h}=\frac{3}{1}\\\tt→ \frac{r}{h}+\frac{h}{h}=\frac{3}{1}\\\tt→ \frac{r}{h}=\frac{3-1}{1}\\\tt→\frac{r}{h}=\frac{2}{1}\\\tt→ 2h=r

★ Now,

  • Total surface area = 2πr(r+h)

t.s.a is given = 462cm sq.unit

\tt→462=2πr^2+2πrh\\\tt→462=2πr^2+154\\\tt→2πr^2=462-154\\\tt→ 2πr^2=308\\\tt→ r^2=\frac{308×6}{2×22}\\\tt→ r^2=\frac{308}{44}\\\tt→ r=\sqrt49\\\tt→ r=7

Therefore,

\tt→2h=r\\\tt→ 2h=7\\\tt→ h=\frac{7}{2}\\\tt→h=3.2cm

◆Now,

\tt Volume(v)=πr^2h\\\tt→ V=\frac{22}{7}×7×7×3.5\\\tt→ V = 11×7×7\\\tt→ V= 11×49\\\tt→ 539cm^3

Hence,

Volume of the cylinder is\tt= 539cm^3

Similar questions