Math, asked by SurjidaKumar, 9 months ago

A solid cylinder has total surface area of 462 square cm its curved surface area is one third of its total surface area find the volume of the cylinder.

please Solve​

Answers

Answered by StarrySoul
63

ANsWeR :

\sf\: 539{cm}^{3}

EXpLaNaTiOn :

Let r be the radius of the base and h be the height of the cylinder. Then,

 \large \boxed{ \purple{ \sf  Total \:  surface  \: area  = 2\pi \: r(r + h)}}

 \large \boxed{ \purple{ \sf Curved \:  surface  \: area  =2\pi rh}}

We Have,

 \star \sf \tt \: C.S.A =  \dfrac{1}{3} (T.S.A)

 \rightarrow \sf \: 2\pi \: rh =  \dfrac{1}{3}{2\pi \: r (r + h)}

 \rightarrow \sf 6\pi \: r \: h = 2\pi \: rh + 2\pi {r}^{2}

 \rightarrow \sf 4\pi \: r \: h  = 2\pi {r}^{2}

 \rightarrow \sf 2h = r

 \because \tt\: Total  \: Surface \:  Area  = 462 {cm}^{3}

 \rightarrow \sf \: 2\pi \: r(r + h) = 462

 \rightarrow \sf \: 2\pi \: r( \dfrac{r}{2}  + r) = 462

 \rightarrow \sf \: 2\pi \: r \times  \dfrac{3r}{2}  = 462

 \rightarrow \sf \: 2 \times  \dfrac{22}{7}  \times  \dfrac{3}{2}   \times {r}^{2}  = 462

 \rightarrow \sf \:  {r}^{2}  = 49

 \rightarrow \sf \:   r =  \sqrt{49}

 \rightarrow \sf \:   r =  \large \boxed{ \red{ \sf \: 7 \: cm}}

Now,

 \sf \: 2h = r

 \sf\: h =  \dfrac{r}{2}

 \sf \: h =  \large \boxed{ \red{ \sf \dfrac{7}{2}  \: cm}}

Volume of the Cylinder :

 \large \boxed{ \purple{ \sf \: Volume \: = \pi {r}^{2}h }}

 \rightarrow \sf \:    \dfrac{22}{7} \times 7 \times 7 \times  \dfrac{7}{2}

 \rightarrow \sf \:  Vol=  \large \boxed{ \red{ \sf \: 539 {cm}^{3} }}

Answered by EliteSoul
189

Answer:

{\underline{\boxed{\sf\green{Volume \: of \: cylinder = 539 \: {cm}^{3} }}}}

Step-by-step explanation:

Given:-

  • Total surface area = 462 sq.cm
  • Curved surface area= 1/3 of TSA

To find:-

  • Volume of cylinder = ?

We know that,

\star{\boxed{\sf\green{CSA = 2 \pi r h }}}

A/Q,

\Rightarrow\sf 2\pi r h = \dfrac{1}{3} [2 \pi r(r + h)] \\\\\Rightarrow\sf 6 \pi r h = 2 \pi r (r + h) \\\\\Rightarrow\sf 6 \pi r h = 2 \pi {r}^{2} + 2 \pi r h \\\\\Rightarrow\sf 6\pi r h - 2 \pi r h = 2 \pi {r}^{2} \\\\\Rightarrow\sf 4\pi r h = 2 \pi {r}^{2} \\\\\Rightarrow\sf 2h = r \\\\\star\sf h = \dfrac{r}{2} ............(i)

A/Q,

\star{\boxed{\sf\pink{TSA = 2 \pi r (r + h) }}}

\Rightarrow\sf 462 = 2 \pi r (r + h) \\\\\Rightarrow\sf 462 = 2 \times \dfrac{22}{7} \times r (r + \dfrac{r}{2}) \\\\\Rightarrow\sf 462 =\dfrac{44r}{7} (\dfrac{3r}{2}) \\\\\Rightarrow\sf 462 =\dfrac{132{r}^{2}}{14} \\\\\Rightarrow\sf 132{r}^{2} = 6468 \\\\\Rightarrow\sf {r}^{2} = \dfrac{6468}{132} \\\\\Rightarrow\sf {r}^{2} = 49 \\\\\Rightarrow\sf r =\sqrt{49} \\\\\star{\boxed{\bold\green{r = 7 \: cm}}}

\rule{100}{2}

\sf Now, h = \dfrac{r}{2} \\\\\Rightarrow\sf h =\dfrac{7}{2} \\\\\star{\boxed{\sf\green{h = 3.5 \: cm}}}

Now,we know that,

\star{\boxed{\bold\green{Volume \: of \: cylinder = \pi {r}^{2} h }}}

\Rightarrow\sf Volume = \dfrac{22}{7} \times {(7)}^{2} \times 3.5 \\\\\Rightarrow{\boxed{\sf\pink{Volume = 539 \: {cm}^{3} }}}

\therefore\sf\green{Volume \: of \: cylinder} = {\boxed{\sf\pink{539 \: {cm}^{3} }}}

Similar questions