Math, asked by 7359148242m, 10 months ago

A solid is made by mounting the cone onto a hemisphere. The total surface area of the solid is 361.1 cm². If the slant height of the cone is 13 cm find the total height of the solid. (π=3.14)​

Answers

Answered by Ataraxia
6

GIVEN :-

  • Solid is made by mounting the cone into a hemisphere
  • Total surface area of solid = 361.1 cm²
  • Slant height of the cone = 13 cm

TO FIND :-

  • Total height of the solid

SOLUTION :-

  C.S.A of the conical part of solid = \sf\pi rl

                                                         =\sf 3.14\times r \times 13 \\\\= 40.82 r  \ cm^2

  C.S.A of the hemispherical part = \sf 2\pi r^2

                                                       =\sf 2 \times 3.14 \times r^2\\\\= 6.28r^2 \ cm^2

 Total surface area of the solid =   C.S.A of the conical part of solid +

                                                           C.S.A of the hemispherical part

     

       \implies \sf 361.1 = 40.82r+6.28r^2\\\\\implies 6.28r^2+40.82r-361.1 = 0 \\\\\implies r^2+ 6.5r - 57.5 = 0 \\\\\implies r^2+11.5r-5r-57.5  = 0 \\\\\implies r(r+11.5)-5(r+11.5)=0\\\\\implies (r+11.5)(r-5)=0\\\\\implies \bf r = -11.5  \ , \ r=5

      Radius cannot be negative .

       So, r = 5

     We know that ,

            \sf l^2=h^2+r^2

     \implies \sf h^2 = l^2-r^2 \\\\\implies h^2 = 13^2-5^2\\\\\implies h =\sqrt{169-25} \\\\\implies h=\sqrt{144} \\\\\implies\bf h = 12

 Total height of the solid = Height of the cone +

                                              Radius of the hemisphere

                                           = 12 + 5

                                            = 17 cm

Similar questions