Math, asked by Vidhi6356, 9 months ago

A solid right circular cylinder has a total surface area 462 sq. cm. If its curved surface area is one-third of the total surface area, find the volume of this cylinder.
[Use π = 22/7]

Answers

Answered by rajsingh24
47

GIVEN:-

• TSA of cylinder = 462cm².

• its CSA is one-third of the TSA.

FIND:-

the volume of this cylinder.

SOLUTION:-

➠ curved surface area = total surface area /3

➠ curved surface area = 462 /3

➠ .°. curved surface area = 154cm.

Rest of area = 462 - 154 = 308 cm.

➠ .°. 2πr² = 308

➠ 2 × 22 / 7 × r² = 308

➠ .°. r² = 308 ×7/44

➠ .°. r² = 49

.°. r = 7 cm.

➠ .°. curved surface area of cylinder = 154cm. (Given)

➠ .°. 2πrh = 154

➠ 2 × 22/7 × 7 ×h =154

➠ .°. h = 154 / 44

➠ .°. h = 3.5cm.

NOW,

volume of cylinder = πr²h

➠ .°. volume of cylinder = 22/7 × (7)² ×3.5

➠ .°. volume of cylinder = 22 × 7 ×3.5

.°. volume of cylinder = 539 cm³.

Answered by xMasterMindx
9

 \huge \bf Solution

 \rm  \:  \:  \: \: Let \: the \: base \: radius \: and \: the \: height \: of \: the \: right \: circular \:  \\  \rm \:  \:  \:  \: cylinder \: be \:  \bf \: r  \: \rm cm \: and \:  \bf \: h \rm \: cm \: respectively. \: Then,

 \rm \:  \:  \: Total \: surface \: area = 462 {}^{2}  \: (given)

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm2\pi r {}^{2} h + 2\pi r {}^{2}  =  \: 462 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(1)

 \:  \:  \:  \rm \: Also, \: given \: that \:

 \:  \:  \:  \rm \: Curved \: surface \: area

 \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm =  \:  \frac{1}{3} \: total \: surface \: area \\

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \rm2\pi rh = \:   \frac{1}{3}(462) = 154 \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: ...(2) \\

 \rm \:  \:  \: Putting \: 2\pi rh = 154 \: from \: (2) \: in \: (1)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm154 + 2\pi rh {}^{2}  = 462

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm2\pi r {}^{2}   \: = \:  462 - 154 = 308

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm2 \times  \frac{22}{7} r {}^{2}  = 308 \\

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm44r {}^{2}  \:  =  \: 7 \times 308

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \: r {}^{2}  \:  =  \:  \frac{7 \times 308}{44} \:  =  \: 7 \times  \:  \frac{77}{11} \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm = \:  7  \times 7 = 7 {}^{2}

 \implies \:    \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \: r \:  =  \: 7

 \rm \:  \:  \: Putting \: r = 7 \: in \: (2)

 \:  \:  \:  \rm2 \:   \times  \:  \frac{22}{7} \times 7 \times h = 154 \\

 \implies \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:    \:  \:  \:  \rm2 \times 22 \times h = 154 \:  \implies \: h =  \:  \frac{154}{2 \times 22} \\

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \: h =  \:  \frac{7}{2} \\

 \therefore \:  \:  \:  \:  \:  \:  \:  \rm \: Volume \: of \: the \: cylinder \:

 \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm = \:  \pi r {}^{2} h

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \rm =  \:  \frac{22}{7}(7) {}^{2}  \bigg( \frac{7}{2} \bigg) \\

 \:  \:  \:  \:  \:  \: \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm =  \:  \frac{22}{7} \times 7 \times 7 \times  \frac{7}{2} \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm =  \: 11 \times 49 = 539 \: cm {}^{3}

Similar questions