a solid right circular cylinder of height 1.21 m and diameter 28 cm is melted and ready into 7 equal solid cubes. Find the edge of each cube.
Answers
Answered by
1
here the cylinder is melted into cube so volume of cylinder is equal to volume of cube
the[ volume of cylinder =pi r^2 h
here the height is given as 1.21m which is 121cms
the radius of cylinder = 14cm
so volume of cylinder = 5324cm
volume of cylinder / volume of cube = number of cubes made=7
5324/a^3=7
5324/7=a^3
solving this we get a=9.12
the[ volume of cylinder =pi r^2 h
here the height is given as 1.21m which is 121cms
the radius of cylinder = 14cm
so volume of cylinder = 5324cm
volume of cylinder / volume of cube = number of cubes made=7
5324/a^3=7
5324/7=a^3
solving this we get a=9.12
Answered by
11
Given height = 1.21m.
= 1.21 * 100cm
= 121cm
Given diameter = 28cm.
Then the radius r = 28/2
= 14cm.
Given that it is melted and ready into 7 solid cubes.
Therefore the volume of cylinder = 7 * volume of cubes. ----- (1)
We know that volume of the cylinder = pir^2h ---- (2)
We know that volume of the cube = s^3. --- (3)
Now,
Substitute (2) & (3) in (1), we get
pir^2h = 7 * S^3
22/7 * (14) * 14 * 121 = 7 * S^3
22 * 2 * 121 * 14= 7 * S^3
74536 = 7 * S^3
74536/7 = S^3
10648 = S^3
S = 22cm.
Therefore the edge of each cube = 22cm.
Hope this helps!
= 1.21 * 100cm
= 121cm
Given diameter = 28cm.
Then the radius r = 28/2
= 14cm.
Given that it is melted and ready into 7 solid cubes.
Therefore the volume of cylinder = 7 * volume of cubes. ----- (1)
We know that volume of the cylinder = pir^2h ---- (2)
We know that volume of the cube = s^3. --- (3)
Now,
Substitute (2) & (3) in (1), we get
pir^2h = 7 * S^3
22/7 * (14) * 14 * 121 = 7 * S^3
22 * 2 * 121 * 14= 7 * S^3
74536 = 7 * S^3
74536/7 = S^3
10648 = S^3
S = 22cm.
Therefore the edge of each cube = 22cm.
Hope this helps!
Similar questions