Physics, asked by rajuanvoju3470, 11 months ago

A solid sphere is rolling witout slipping.the ratio of rotational kinetic energy to total kinetic energy is given by

Answers

Answered by shadowsabers03
2

Consider a rolling body of,

  • mass M
  • radius R
  • radius of gyration K
  • moment of inertia I
  • linear velocity v
  • angular velocity ω

The translational kinetic energy of the rolling body is given by,

\longrightarrow\sf{K_t=\dfrac{1}{2}Mv^2}

The rotational kinetic energy of the rolling body is given by,

\longrightarrow\sf{K_r=\dfrac{1}{2}I\omega^2\quad\quad\dots(1)}

But we know that,

  • \sf{I=MK^2}

  • \sf{\omega=\dfrac{v}{R}}

Then (1) becomes,

\longrightarrow\sf{K_r=\dfrac{1}{2}\cdot MK^2\left(\dfrac{v}{R}\right)^2}

\longrightarrow\sf{K_r=\dfrac{1}{2}Mv^2\cdot \dfrac{K^2}{R^2}}

So the total kinetic energy of the rolling body is,

\longrightarrow\sf{K=K_t+K_r}

\longrightarrow\sf{K=\dfrac{1}{2}Mv^2+\dfrac{1}{2}Mv^2\cdot\dfrac{K^2}{R^2}}

\longrightarrow\sf{K=\dfrac{1}{2}Mv^2\left[1+\dfrac{K^2}{R^2}\right]}

Now the ratio of rotational kinetic energy to total kinetic energy is,

\longrightarrow\sf{\dfrac{K_r}{K}=\dfrac{\dfrac{1}{2}Mv^2\cdot\dfrac{K^2}{R^2}}{\dfrac{1}{2}Mv^2\left[1+\dfrac{K^2}{R^2}\right]}}

\longrightarrow\sf{\underline{\underline{\dfrac{K_r}{K}=\dfrac{\dfrac{K^2}{R^2}}{1+\dfrac{K^2}{R^2}}}}}

========================================

For a solid sphere,

  • \sf{\dfrac{K^2}{R^2}=\dfrac{2}{5}}

Then the ratio is,

\longrightarrow\sf{\dfrac{K_r}{K}=\dfrac{\dfrac{2}{5}}{1+\dfrac{2}{5}}}

\longrightarrow\sf{\dfrac{K_r}{K}=\dfrac{\quad\dfrac{2}{5}\quad}{\quad\dfrac{7}{5}\quad}}

\longrightarrow\sf{\underline{\underline{\dfrac{K_r}{K}=\dfrac{2}{7}}}}

Similar questions