Math, asked by saitamasriram, 4 months ago

A sphere, a cylinder and a cone are of same radius ,whereas cone and cylinder are of same height. Find the ratio of their curved surface areas​

Answers

Answered by Anonymous
2

Answer:

Since, the height of a sphere is the diameter, the cone and cylinder have height 2r.

Then

Curved surface area of Sphere=4πr²

Curved surface area of cylinder =2πr(2r)=4πr²

Curved surface area of cone = πrl

where, l=

(r

2

+h

2

)=

(r2+(2r)

2

)=

5r

2

=r

5

⇒ Curved surface area of cone =π

5r

2

Now,

ratio of CSA 's a sphere ,cylinder and a cone = 4πr

2

:2πrh:πrl

=4πr

2

:4πr

2

:πr

2

5

Answered by Anonymous
2

  \implies\huge \sf \underline \green{Answer}

 \huge\implies\rm{ \underline{ \underline{ \purple{ \rm{4 : 4 :  \sqrt{5} \: }}}} }

_____________________________________________________

 \implies \huge \sf \underline \red{Q uestion}

  • A sphere , a cylinder and a cone are of same radius and same height .Find the ratio of their curved surfaces.

________________________________________________

  \implies\sf \huge \underline \pink{To \:  find}

  • ratio of curved surfaces areas

___________________________________________________

 \implies \sf \huge \underline \orange{solution}

  • height of a sphere is diameter

  • height of a cone is 2r

  • height of cylinder is 2r

  • ratio of curved surfaces is ?

Do you know that formula of curved surface area of sphere,cone and cylinder is

  • csa is curved surface area

____________________________________________________

  \:  \:  \:  \:  \:  \:  \: \sf{ \boxed{ \underline{ \underline{ \blue{ \sf{CSA \: of \: sphere = 4\pi {r}^{2}}}}}}}

  \:  \:  \:  \:  \:  \: \sf{ \boxed{ \underline{ \underline{ \purple{ \sf{CSA \: of \: cylinder = 2\pi \: r(2r) = 4\pi{r}^{2}}}}}}}

  \:  \:  \:  \:  \:  \:  \: \sf{ \boxed{ \underline{ \underline{ \pink{ \sf{CSA \: of \: cone = \pi \: rl}}}}}}

  • so, find the csa of cone

 \rm \red{1 =  \sqrt{( {r}^{2} +  {h}^{2}) } -  \sqrt{(r2 + (2r) {}^{2}) } -  \sqrt{5 {r}^{2}  - r \sqrt{5}} }

  \:  \:  \:  \:  \:  \:  \: \sf{ \boxed{ \underline{ \underline{ \pink{ \sf{CSA \: of \: cone = \pi \: \sqrt{5 {r}^{2} } }}}}}}

_________________________________________________

  • Now we have to find the ratio of curved surface

Ratio of CSA of sphere, cylinder and cone is

 \tt \huge{ \boxed{ \underline{ \underline{ \green{ \tt{4\pi \:  {r}^{2} :2\pi \: rh : \: \pi \: rl}}}}}}

 \implies\rm \red{4\pi \:  {r}^{2} :2\pi \: rh : \: \pi \: rl}

\implies\rm \red{4\pi \:  {r}^{2} :4\pi \:  {r}^{2}: \pi \:  {r}^{2} \sqrt{5}   }

\implies\rm \red{4 : 4 :  \sqrt{5} }

Similar questions