Math, asked by sanjanaaveesam3134, 11 months ago

A spherical ball of lead 3 cm in diameter is melted and recast into three spherical balls. If the diameters of two balls be 3/2 cm and 2 cm, find the diameter of the third ball.

Answers

Answered by sanjeevk28012
1

Answer:

The diameter of third ball is \dfrac{5}{2}  cm

Step-by-step explanation:

Given as :

A spherical ball of lead 3 cm in diameter is melted and recast into three spherical balls.

The diameter of bigger spherical ball = D = 3 cm

Or, The radius of bigger spherical ball = R = \dfrac{D}{2}

i.e   Radius = R = \dfrac{3}{2}   cm

As bigger ball is recast into three small balls

So, The diameter of balls = d_1 = \dfrac{3}{2}   cm

Or,                                         r_1 = \dfrac{3}{4}   cm

                                             d_2 =  2  cm

                                             r_2 = 1 cm

Let The diameter of third ball = d_3   cm

And                                    radius = r_3   cm

Again

Volume of spherical ball = \dfrac{4}{3} × π × Radius³

So, Volume of bigger ball = Sum of volume of three smaller balls

i.e  \dfrac{4}{3} × π × R³  =  \dfrac{4}{3} × π × r_1 ³ +  \dfrac{4}{3} × π × r_2 ³  +  \dfrac{4}{3} × π × r_3 ³

Or, R³ = r_1 ³ + r_2 ³ + r_3 ³

Or  (  \dfrac{3}{2} )³  = (  \dfrac{3}{4} )³  +  1³ + r_3 ³

Or, r_3 ³ = \dfrac{27}{8}  -  \dfrac{27}{64} - 1  

Or, r_3 ³ = \dfrac{125}{64}

∴ , r_3   = ∛\dfrac{125}{64}

i.e  r_3  = \dfrac{5}{4}  cm

So, The radius of third ball = r_3  = \dfrac{5}{4}  cm

The diameter of third ball = d_3 = 2 ×  \dfrac{5}{4}  cm  = \dfrac{5}{2}  cm

Hence, The diameter of third ball is \dfrac{5}{2}  cm  . Answer

Answered by dheerajk1912
4

The diameter of the third ball is 2.5 cm

Step-by-step explanation:

Given data

Radius of main ball\mathbf{=\frac{3}{2} \ cm}

Radius of first ball\mathbf{=\frac{3}{4} \ cm}

Radius of second ball\mathbf{=\frac{2}{2}=1 \ cm}

Radius of third ball\mathbf{=\frac{D}{2} \ cm}

We know volume of spherical ball \mathbf{=\frac{4}{3}\pi R^{3} }

Volume of first ball+Volume of second ball+Volume of third ball =Volume of main ball

\mathbf{\frac{4}{3}\pi \left ( \frac{3}{4} \right )^{3}+\frac{4}{3}\pi 1^{3}+\frac{4}{3}\pi \left ( \frac{D}{2} \right )^{3}=\frac{4}{3}\pi \left ( \frac{3}{2} \right )^{3} }

On cancel common term on both side of above equation, we get

\mathbf{\left ( \frac{3}{4} \right )^{3}+1+\left ( \frac{D}{2} \right )^{3}=\left ( \frac{3}{2} \right )^{3} }

\mathbf{\left ( \frac{D}{2} \right )^{3}=\left ( \frac{3}{2} \right )^{3}-\left ( \frac{3}{4} \right )^{3}-1}

\mathbf{\left ( \frac{D}{2} \right )^{3}=\frac{125}{64}}

So

\mathbf{\frac{D}{2}=\frac{5}{4}}

\mathbf{D=\frac{5}{2}=2.5 \ cm=} This is diameter of third ball.

Similar questions