Physics, asked by yashgmav, 11 months ago

A steel wire is 1m long and 2mm² in area cross section.A force of 5 × 10³ N streches the wire by 1mm. A wire of same material and diameter has a length of 10 m the force required to produce an extension of 2mm is​

Answers

Answered by Anonymous
5

 \mathfrak{ \huge{ \red{ \underline{ \underline{ANSWER}}}}}

  • Given :

=> Length of wire A = 1m

=> Force acts on wire A = 5×10^3N

=> Change in length of wire A = 1mm = 0.001m

=> Length of wire B = 10m

=> Area of cross section of both wires are same

=> Both wires are made from same material

  • To Find :

=> Force required to produce an extension in wire B of 2mm = 0.002m

  • Formula :

=> Here material of both wires is same hence young modulus of both wires is also same.

=> Young modulus of material is given by...

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed {\sf{ \bold{ \pink{Y =  \frac{stress}{strain} }}}}

  \:  \:  \: \boxed{ \sf{ \blue{stress =  \frac{F}{A} }}} \:  \:  \:   \:  \: \boxed{ \sf{ \blue{strain =  \frac{ \delta \: L}{L} }}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \sf{ \bold{ \pink{Y =  \frac{F \times L}{A \times  \delta \: L} }}}}

  • Calculation :

=> Here Young modulus and Area of cross section is same for both...

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \therefore \:  \: \boxed{ \sf{ \bold{ \orange{F \propto \:  \frac{ \delta \: L}{L} }}}}

 \implies \sf \:  \frac{</strong><strong>F</strong><strong>a}{</strong><strong>F</strong><strong>b}  =  \frac{ \delta \: </strong><strong>L</strong><strong>a}{</strong><strong>L</strong><strong>a}  \times  \frac{</strong><strong>L</strong><strong>b}{ \delta \: </strong><strong>L</strong><strong>b}

 \implies \sf \:  \frac{5 \times  {10}^{3} }{Fb}  =  \frac{0.001}{1}  \times  \frac{10}{0.002}  \\  \\  \implies \sf \: Fb = 1 \times  {10}^{3} N \\  \\  \\   \huge{\star} \: \boxed{ \boxed{ \sf{ \bold{ \green{ \huge{Fb =  {10}^{3}N }}}}}}

Similar questions