Physics, asked by dollynandanwar, 11 months ago

A steel wire of length 4.5 m and a copper wire of length 3.5 m are stretched samt
wire of length 3.5 m are stretched same amount under a
given load. If ratio of youngs modulli of steel to that of copper is
12
then what is the ratio of Cross
sectional area of steel wire to copper wire ?​

Answers

Answered by krishanu2002
2

Answer:

As:Ac=0.107:1

Explanation:

Ls=4.5m ; Lc=3.5m ; Fs=Fc=F(let) ; ΔLs=ΔLc=ΔL(let) ; Ys:Yc=12:1 ; As:Ac=?

so,               Ys/Yc= ((F/As)/(ΔL/Ls))/((F/Ac)/(ΔL/Lc))

               =>  12/1  = (Ls/As)/(Lc/Ac)  ( F and ΔL cancels out)

               =>  12/1  = (4.5/As)/(3.5/Ac)

               =>  12/1  = (4.5xAc)/(3.5xAs)

               =>As/Ac= 4.5/(3.5x12)

                             = 4.5/42

                             = 0.107/1                     <-:answer

Answered by BendingReality
2

Answer:

Y₁ : Y₂ = 9 : 5

Explanation:

Given :

For steel wire :

A₁ = 3 × 10⁻⁵ m³  and l₁ = 4.7 m

For copper wire :

A₂ =  4 × 10⁻⁵ m³  and l₂ = 3.5 m

It is said as :

Δl₁ = Δl₂ = Δl  and  F₁ = F₂ = F

We know :

Y₁ =  F₁ l₁ / A₁ Δl₁

= > F /  3 × 10⁻⁵ × 4.7 /Δl

Also Y₂ = F₂ l₂ / A₂ Δl₂

Y₂ = F /  4 × 10⁻⁵ m³ × 3.5 / Δl

We have find ratio of Y₁ / Y₂

Y₁ : Y₂ = ( F /  3 × 10⁻⁵ × 4.7 /Δl ) / ( F /  4 × 10⁻⁵ m³ × 3.5 / Δl )

Y₁ : Y₂ = 4 × 10⁻⁵ × 4.7 / 3 × 10⁻⁵ × 3.5 )

Y₁ : Y₂ = 18.5 / 10.5 ≈ 1.8

Y₁ : Y₂ = 18 / 10 .

Y₁ : Y₂ = 9 : 5

Hence the ratio of the Young's modulus of steel to that of copper 9 : 5

Similar questions