Math, asked by akshatagrawal8534, 1 year ago

A steel wire when bent in the form of a square encloses the area of 121 cm square if a same wire bent into a form of a circle. find the areaof circle intext:zigya

Answers

Answered by inhumandrowsey
0

Given, Wire is bent in the shape of a square with area 121 cm².

____________________________________________________________

Area of square = (a)² where a is the side of the square.

So, a² = 121

a = √121

a = 11

Now the perimeter of the square will be equal to the perimeter of the circle.

So perimeter of the square = 4a

= 4 x 11

= 44 cm

Perimeter of the circle = 2πr where r is the radius of the circle.

2.π.r = 44

2.22/7.r = 44

r = 44*7/44

r = 7 cm

Area of circle = πr²

= 22/7 · 7 · 7

= 22 x 7

= 154 cm²

Hence the area of circle is 154 cm².


____________________________________________________________

Answered by Anonymous
9

□□□□

 \large \boxed{ \textsf{given:-}}

 \texttt {\: enclosed area of steel wire when bent to form square = 121 \: sq.cm }

 \large \boxed{ \textsf{to find out:-}}

 \textsf{the area of circle}=??

  \large \boxed{ \rm \: solution:-}

 \rm \: Side  \: a \: square \:  =  \sqrt{121}cm  = 11cm

 \rm \: perimeter \: of \: square = (4   \times 11)cm = 44cm

 \rm \therefore \: length \: of \: the \: wire \:  = 44cm

 \rm \therefore \: circumference \: of \: the \: circle \:  = length \: of \: wire = 44cm

 \textsf{let the radius of the circle be }r \rm \: cm

 \rm \: then \: 2 \pi \: r = 44 \implies \: 2 \times  \large \frac{22}{7}  \small r = 44 \implies \: r = 7

 \rm \therefore \: area \: of \: the \: circle =  \pi \: r {}^{2}

 \large \rm \:  =  \huge( \small \frac{22}{7}  \times 7 \times 7 \huge) \small \:cm {}^{2}  = 154 \: cm {}^{2}

Similar questions