Physics, asked by BestQuestion, 4 months ago

A stone is dropped from a height of 20 m. Find the time of reaching at ground and what will be the it velocity before touches the ground​

Answers

Answered by Anonymous
10

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\huge\boxed{\bf{\red{\fcolorbox{blue}{white}{Answer }}}}

 \bf{Given,}

 \bf \scriptsize{Height=20 m}

 \bf \scriptsize{Gravitation = 9.8 \: m/ \: sec^{2} }

 \bf \scriptsize{Initial \: velocity(u) = 0 \: m /\: sec}

 \bf \scriptsize{Final \: velocity(v) = ?}

 \bf \scriptsize{Time =?}

 \bf \scriptsize{Now,}

 \bf  \scriptsize{ \: 1.) \: Using \: relation}

 \bf \scriptsize{V^{2} = u^{2} + 2gh  }

 \bf \scriptsize{ \implies \: (u)^{2} + 2  \times 9.8 \times 20 }

\bf \scriptsize{\implies \:  (u)^{2} + 2 \times  \frac{98}{ \cancel10} \times  \cancel20 }

 \bf \scriptsize{ \implies \: 0 + 2 \times 98 \times 2}

 \bf \scriptsize{ \implies \: 4 \times 98}

 \bf \scriptsize{ \implies \: V^{2} = 392 \: m/sec }

 \bf \scriptsize{\implies \: v =  \sqrt{392} }

 \bf \scriptsize{ \implies \: V =  \sqrt{196 \times 2} } \\  \bf \scriptsize{ = 14 \sqrt{2}  \: m \: /sec }

 \bf \scriptsize{2.) \: For \: a \: freely\: falling \: body.}

 \bf \scriptsize{V = u + gt}

\bf \scriptsize{t \:  =  \frac{v - u}{g} }

 \bf \scriptsize{ \implies \:  \frac{14 \sqrt{2 - 0} }{9.8} }

 \bf \scriptsize{ \implies \frac{ \cancel14 \sqrt{2} - 0 \times 10 }{ \cancel98} }

 \bf \scriptsize{ \implies \:  \frac{10 \sqrt{2} }{7} \: sec }

 \bf  \scriptsize \red{Hence \: final \: velocity \:  = 14 \sqrt{2}m / sec \: and \: Time \: is \:  \frac{10 \sqrt{2} }{7}sec }

Similar questions