Physics, asked by gurudattamishr, 1 year ago

A stone is thrown in a vertically upward direction with a velocity of 5 m s-1. If the acceleration of the stone during its motion is 10 m s-2 in the downward direction, what will be the height attained by the stone and how much time will it take to reach there?

Answers

Answered by soumya11mamali
3
Firstly,as the initial velocity is 0m/s.
So,
v^2-u^2=2as
5^2-0^2=2*10*s
25=20*s
s=25/20
s=5/4

By applying s=ut+1/2at^2,we get,
s=ut+1/2at^2
5/4=0+1/2*10*t^2
5/4*1/5=t^2
t=1/2 sec or 0.5 sec.
Attachments:
Answered by sangeetadas59023
0

Answer:

initial velocity (u)=5 m/s

initial velocity (u)=5 m/sa= -10m/s² (  negative as downward)

initial velocity (u)=5 m/sa= -10m/s² (  negative as downward)final velocity (v) = 0 m/s (as ball comes to rest at highest position)

initial velocity (u)=5 m/sa= -10m/s² (  negative as downward)final velocity (v) = 0 m/s (as ball comes to rest at highest position)Now,

initial velocity (u)=5 m/sa= -10m/s² (  negative as downward)final velocity (v) = 0 m/s (as ball comes to rest at highest position)Now,                         2as = v² - u²

initial velocity (u)=5 m/sa= -10m/s² (  negative as downward)final velocity (v) = 0 m/s (as ball comes to rest at highest position)Now,                         2as = v² - u²                         2x(-10)xs = 0 - 5²

initial velocity (u)=5 m/sa= -10m/s² (  negative as downward)final velocity (v) = 0 m/s (as ball comes to rest at highest position)Now,                         2as = v² - u²                         2x(-10)xs = 0 - 5²                         -20s   = - 25

initial velocity (u)=5 m/sa= -10m/s² (  negative as downward)final velocity (v) = 0 m/s (as ball comes to rest at highest position)Now,                         2as = v² - u²                         2x(-10)xs = 0 - 5²                         -20s   = - 25                         s = -25/-20  = 5 / 4

initial velocity (u)=5 m/sa= -10m/s² (  negative as downward)final velocity (v) = 0 m/s (as ball comes to rest at highest position)Now,                         2as = v² - u²                         2x(-10)xs = 0 - 5²                         -20s   = - 25                         s = -25/-20  = 5 / 4                             = 1.25 m <-- height attained by stone

initial velocity (u)=5 m/sa= -10m/s² (  negative as downward)final velocity (v) = 0 m/s (as ball comes to rest at highest position)Now,                         2as = v² - u²                         2x(-10)xs = 0 - 5²                         -20s   = - 25                         s = -25/-20  = 5 / 4                             = 1.25 m <-- height attained by stoneNow ,                     v = u + at

initial velocity (u)=5 m/sa= -10m/s² (  negative as downward)final velocity (v) = 0 m/s (as ball comes to rest at highest position)Now,                         2as = v² - u²                         2x(-10)xs = 0 - 5²                         -20s   = - 25                         s = -25/-20  = 5 / 4                             = 1.25 m <-- height attained by stoneNow ,                     v = u + at                             0 = 5 + (-10)t

initial velocity (u)=5 m/sa= -10m/s² (  negative as downward)final velocity (v) = 0 m/s (as ball comes to rest at highest position)Now,                         2as = v² - u²                         2x(-10)xs = 0 - 5²                         -20s   = - 25                         s = -25/-20  = 5 / 4                             = 1.25 m <-- height attained by stoneNow ,                     v = u + at                             0 = 5 + (-10)t                             t = -5/-10

initial velocity (u)=5 m/sa= -10m/s² (  negative as downward)final velocity (v) = 0 m/s (as ball comes to rest at highest position)Now,                         2as = v² - u²                         2x(-10)xs = 0 - 5²                         -20s   = - 25                         s = -25/-20  = 5 / 4                             = 1.25 m <-- height attained by stoneNow ,                     v = u + at                             0 = 5 + (-10)t                             t = -5/-10                               = 0.5 s <-- time taken to reach highest point

Similar questions