A stone is thrown vertically upward with an initial velocity of 40m/s find the total distance covered and net displacement also find the maximum height reached by the stone..
Answers
Answered by
0
_/\_Hello mate__here is your answer--
____________________
u = 40 m/s
v = 0 m/s
s = Height of the stone
g = −10 ms^−2 ( upward direction)
Let h be the maximum height attained by the stone.
Using equation of motion under gravity
v^2 − u^2 = 2gs
⇒0^2 − 40^2 = 2(−10)ℎ
⇒ ℎ =40×40/ 20 = 80 m
Therefore, total distance covered by the stone during its upward and downward journey
= 80 + 80 = 160 m
Net displacement during its upward and downward journey
= 80 + (−80) = 0
I hope, this will help you.☺
Thank you______❤
_______________________❤
Answered by
0
where V = 0
U = 40 m/s
a = -g m/s² = -10 m/s²
0 = (40)² -2 × 10 × S
- S = 80 m .
Similar questions