Physics, asked by lintonsoraisham028, 10 months ago

A stone of mass 0.25 kg is whirled in a circle of radius 1.5m.What is the maximum speed with which the stone can be whirled around if the string can withstand tension of 600N.​

Answers

Answered by Sharad001
249

Question :-

A stone of mass 0.25kg is whirled in a circle of radius 1.5m.What is the maximum speed with which the stone can be whirled around if the string can withstand tension of 600N.

Answer :-

  \to \boxed{ \: \sf \: v_{max} =60 \:  \frac{m}{ {s}^{2} } } \\  \\  \sf \: hence \: maximum \: velocity \: is \: 60 \: \frac{m}{ {s}^{2} }  \:

To Find :-

Maximum speed .

Solution :-

Given that :

  • Mass of stone (m) = 0.25 kg

  • radius of circle (r) = 1.5 m

  •  \sf T_{max.} = 600 N

We know that ,

if any Object is pure rotating so centripetal force is provided by tension in string .

We know that ,

let v be the speed of stone

 \to  \boxed{\sf \: v_{max} =  \sqrt{T_{max.} \times  \frac{r}{m} } } \\

Replace the given values in above formula :

 \to \: \sf \: v_{max} = \sqrt{600 \times  \frac{1.5}{0.25} }  \\  \\  \to \: \sf \: v_{max} =  \sqrt{ \frac{ \cancel{600} \times 15 \times 10}{ \cancel{25}} }  \\  \\  \to \: \sf \: v_{max} = \sqrt{ 24 \times 150}  \\  \\  \to \: \sf \: v_{max} = \sqrt{3600}  \\  \\  \to \boxed{ \: \sf \: v_{max} =60 \:  \frac{m}{ {s}^{2} } } \\  \\  \sf \: hence \: maximum \: velocity \: is \: 60 \: \frac{m}{ {s}^{2} }

Answered by manjitkaur1621
1

Answer:

60 m/s^2 is the correct answer

Explanation:

Similar questions