Physics, asked by muskan3887, 9 months ago

A stream of electrons is moving with a drift velocity of 5mm/sec. If number of electrons be 6*10^23/cm^3,calculate the current density

Answers

Answered by Anonymous
21

\large\underline{\bigstar \: \: {\sf Given-}}

  • Stream of Electron is moving with a drift velocity {\sf v_d=5\:mm/s}
  • Electron density (n)= 6×10²³ /cm³

\large\underline{\bigstar \: \: {\sf To \: Find -}}

  • Current Density ( J )

\large\underline{\bigstar \: \: {\sf Formula \: Used -}}

\implies\underline{\boxed{\sf Current (I)=neAv_d}}

\implies\underline{\boxed{\sf Current \: Density (J)=\dfrac{I}{A}}}

\large\underline{\bigstar \: \: {\sf Solution-}}

Convert {\bf v_d} from mm/s to m/s -

\implies{\sf v_d=5\:mm/s }

\implies{\bf v_d=5 \times 10^{-3}\:m/s}

Convert electron density (n) from /cm³ to / -

\implies{\sf n=6 \times 10^{23}\:/cm^3}

\implies{\sf n =6\times 10^{23} \times 10^{-6}}

\implies{\bf n = 6 \times 10^{17}}

Now , On putting value

\implies{\sf  I = neAv_d}

e = {\sf 1.6 \times 10^{-19}\:C}

A = Cross-section Area

\implies{\sf I =6\times 10^{17}×1.6\times 10^{-19} \times A \times 5×10^{-3} }

\implies{\sf 48\times 10^{-5}\times A}

\large\implies{\sf Current \: Density (J)=\dfrac{I}{A} }

\implies{\sf \dfrac{48×10^{-5}\times A}{A}}

\implies{\sf 48 \times 10^{-5}\:A }

\large\underline{\bigstar \: \: {\sf Answer-}}

Current Density is {\bf 48\times 10^{-5}\:A}

Similar questions