Physics, asked by dhruvp210, 9 months ago

A system consists of two cubes of mass m1, and m2 respectively connected by a spring of force constant k. force (F) that should be applied to the upper cube for which the lower one just lifts after the force is removed, is

Answers

Answered by arghyag884
4

Answer:

F=mg  

So ,here m=M1+M2

There for F=(M1+M2)g

Answered by ritikkumar269
0

Answer:

The force (F) that is applied to the upper cube for which the lower cube rises right after the force has been removed, is \bold{$\mathrm{F}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g}$}.

Explanation:

Initially in the state of equilibrium:

$$\begin{aligned}&\mathrm{F}+\mathrm{m}_{1} \mathrm{~g}=\mathrm{kx}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}=\right.\text { initial compression) } \\&\therefore \mathrm{x}_{\mathrm{i}}=\frac{\mathrm{F}+\mathrm{m}_{1} \mathrm{~g}}{\mathrm{k}} \ldots(1)\end{aligned}$$

Let $x_{f}$ be the extension in spring when the lower block just lifts. Also,

$$k x_{f}=m_{2} g \text { or } x_{f}=\frac{m_{2} g}{k} \text {...(2) }$$

Now from conservation of mechanical energy, increase in gravitational implicit energy of $\mathrm{m}_{1}=$elastic energy of the spring.

$\therefore \mathrm{m}_{1} \mathrm{~g}\left(\mathrm{x}_{\mathrm{i}}+\mathrm{x}_{\mathrm{f}}\right)=\frac{1}{2} \mathrm{k}\left(\mathrm{x}_{\mathrm{i}}^{2}-\mathrm{x}_{\mathrm{f}}^{2}\right)$

Substituting the values of $x_{i}$ and $x_{f}$ from Equations (1) and (2), we get $\mathrm{F}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g}$

Therefore, the required expression for force is $\mathrm{F}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g}$.

Similar questions