Math, asked by vishnunair6219, 1 year ago

A^tanx-a^sinx/tanx-sinx when lim x yends to zero is equals to

Answers

Answered by abhi178
11
it seems , you ask \bold{\lim_{x\to\ 0}{\frac{a^{tanx}-a^{sinx}}{tanx-sinx}}}
There are so many methods to solve it .
I suggest use standard form of limit .
I mean, \bold{\lim_{f(x)\to\ 0}{\frac{a^{f(x)}-1}{f(x)}}} = loga
Use this standard form here ,

Now, \bold{\lim_{f(x)\to\ 0}{\frac{(a^{tanx}-1)-(a^{sinx}-1)}{tanx-sinx}}}
=\bold{\lim_{f(x)\to\ 0}{\frac{\frac{(a^{tanx}-1)}{tanx}tanx-\frac{(a^{sinx}-1)}{sinx}sinx}{tanx-sinx}}}
Now, apply above standard form ,
Then, \bold{\lim_{f(x)\to\ 0}{\frac{\frac{(a^{tanx}-1)}{tanx}tanx-\frac{(a^{sinx}-1)}{sinx}sinx}{tanx-sinx}}} =( loga.tanx - loga.sinx)/(tanx - sinx)
= loga(tanx - sinx)/(tanx - sinx)
= loga

Hence, answer is loga
Similar questions