A tent is of the shape of a right circular up to a height of 3m and then becomes a right circular cone with a maximum height of 13.5m above the ground. Calculate the cost of painting the inner side of the tent at the rate of ₹2 per sq.metre if the radius of the edge is 14 cm
Answers
Answered by
3
SA of cylinder =2πrh
2 \times \frac{22}{7} \times 14 \times 3 \\ = 264 {m}^{2}
radius=14m
height =13.5-3=10.5
l {}^{2} = r {}^{2} + h {}^{2}
14 { }^{2} + 10.5 { }^{2} \\ 196 + 110.25 \\ = 306.25 \\ l \sqrt{306.25 } \\ l = 17.5m
CSA of cone =πrl
\frac{22}{7} \times 14 \times 17.5 \\ = 770 {m}^{2}
total area=264+770
1034 {m}^{2}
cost of cloth per square m = Rs80
cost of cloth
1034 {m}^{2}
80 \times 1034 \\ = 82720
2 \times \frac{22}{7} \times 14 \times 3 \\ = 264 {m}^{2}
radius=14m
height =13.5-3=10.5
l {}^{2} = r {}^{2} + h {}^{2}
14 { }^{2} + 10.5 { }^{2} \\ 196 + 110.25 \\ = 306.25 \\ l \sqrt{306.25 } \\ l = 17.5m
CSA of cone =πrl
\frac{22}{7} \times 14 \times 17.5 \\ = 770 {m}^{2}
total area=264+770
1034 {m}^{2}
cost of cloth per square m = Rs80
cost of cloth
1034 {m}^{2}
80 \times 1034 \\ = 82720
Similar questions
Social Sciences,
1 year ago
Math,
1 year ago