Math, asked by rteja7546, 1 year ago

A tent is to be built in the form of a cylinder of radius 10 m surmounted by a cone of the same radius. if the height of the cylindrical part is 5 m and slant height of the conical part is 15 m, how much canvas will be required to build the tent? allow 20% extra canvas for folding and stitching. (take π = 22/7)

Answers

Answered by abhishek402
2
canvas required to build the tent = 660/7 sq. m
Answered by wifilethbridge
1

Answer:

785.713m^2

Step-by-step explanation:

Height of Cylinder = 5 m

Radius of Cylinder = 10 m

So, Lateral surface area of cylinder = 2\pi rh

                                                         = 2 \times \frac{22}{7} \times 10 \times 5

                                                         = 314.285m^2

Slant height of cone(l) = 15 m

Radius of cone = 10 m

So, Lateral surface area of cone = \pi r l

                                                      = \frac{22}{7} \times 10 \times 15

                                                      = 471.428 m^2

So, the total canvas is required to build the tent = 314.285+471.428

                                                                                = 785.713m^2

Hence ,the total canvas is required to build the tent is 785.713m^2

Similar questions