Physics, asked by nani3878, 5 months ago


A thin uniform wire is bent in the form of a semi-circle of radius R Distance of its center of mass from the geometric center is

Answers

Answered by tejashriphadtare
3

answer is 2R/R is the answer

Attachments:
Answered by nirman95
2

To find:

Centre of mass of a semi-circular ring of Radius R;

Calculation:

Linear mass density of ring

\lambda = \dfrac{m}{\pi R }

= > \dfrac{dm}{dy} = \dfrac{m}{\pi R }

= > dm = \dfrac{m}{\pi R } \times (dy)

= > dm = \dfrac{m}{\pi R } \times (R \: d \theta)

= > dm = \dfrac{m \: d \theta}{\pi }

So, centre of mass :

\displaystyle \: \bar{y} = \dfrac{1}{m} \int \: y \: dm

= > \displaystyle \: \bar{y} = \dfrac{1}{m} \int \: R \cos( \theta)\: dm

= > \displaystyle \: \bar{y} = \dfrac{1}{m} \int \: R \cos( \theta)\: \frac{m \: d\theta}{\pi}

= > \displaystyle \: \bar{y} = \dfrac{1}{\pi} \int \: R \cos( \theta) \: d \theta

= > \displaystyle \: \bar{y} = \dfrac{R}{\pi} \int \: \cos( \theta) \: d \theta

= > \displaystyle \: \bar{y} = \dfrac{R}{\pi} \int_{0}^{\pi} \: \cos( \theta) \: d \theta

= > \displaystyle \: \bar{y} = \dfrac{2R}{\pi}

So, final answer is:

\boxed{ \red{ \large{ \sf{ \: \bar{y} = \dfrac{2R}{\pi}}}}}

Attachments:
Similar questions