A three digit number is equal to 17 times the sum of the digits. If the digits are reversed the new number is 198 more than the original number. The sum of the extreme digits is less than the middle digit. Find the original number.
Answers
The original number for the given statement is 153
Step-by-step explanation:
Given as :
Statement I
A three digit number is equal to 17 times the sum of the digits.
Let ones digit = 1 × x = x
tens digit = 10 × y = 10 y
hundreds digit = 100 × z = 100 z
So, original number = 100 z + 10 y + x
According to question
The sum of digits = x + y + z
So,
100 z + 10 y + x = 17 ( x + y + z )
Or, 100 z + 10 y + x = 17 x + 17 y + 17 z
Or, ( 100 z - 17 z ) + ( 10 y - 17 y ) + ( x - 17 x ) = 0
i.e, 83 z - 7 y - 16 x = 0 -----------------------1
Again
Statement II
If the digits are reversed the new number is 198 more than the original number
So, The reverse digits = 100 x + 10 y + z
i.e 100 x + 10 y + z = 100 z + 10 y + x + 198
Or, ( 100 x - x ) + ( 10 y - 10 y ) + ( z - 100 z ) = 198
Or, 99 x + 0 - 99 z = 198
Or, x - z =
O, x - z = 2 ---------------------(2)
So, z = x - 2
Again
Statement III
The sum of the extreme digits is one less than the middle digit.
i.e z + x = y - 1 .......................3
Now, Solving eq 2 and 3
( x - z ) + ( z + x ) = 2 + y - 1
Or, 2 x - y = 1
So, y = 2 x - 1 .................4
Now, Put the value of y and z in eq 1
∵ 83 z - 7 y - 16 x = 0
Or, 83 ( x - 2 ) -7 ( 2 x - 1 ) - 16 x = 0
Or, 83 x - 166 - 14 x + 7 - 16 x = 0
Or, 53 x = 159
∴ x =
i.e x = 3
Now, put the value of x in eq 4
y = 2 × 3 - 1
i.e y = 5
Now, Put the value of x in eq 2
z = 3 - 2
i.e z = 1
Putting the value of x , y , z in original number we get
So, The original number = 100 z + 10 y + x
Or, The original number = 100 × 1 + 10 × 5 + 3
Or, The original number = 100 + 50 + 3
∴ The original number = 153
Hence, The original number for the given statement is 153 Answer